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Abstract. Institutions play a critical role in enabling communities to
manage common-pool resources and avert tragedies of the commons.
Prior research suggests institutions emerge when universal participation
yields greater collective benefits than non-cooperation. However, a funda-
mental issue arises: individuals typically perceive participation as advan-
tageous only after an institution is established, creating a paradox—how
can institutions form if no one will join before a critical mass exists?
We term this conundrum the institution bootstrapping problem and
propose that misperception—specifically, agents’ erroneous belief that
an institution already exists—could resolve this paradox. By integrat-
ing well-documented psychological phenomena—including cognitive bi-
ases, probability distortion, and perceptual noise—into a game-theoretic
framework, we demonstrate how these factors collectively mitigate the
bootstrapping problem. Notably, unbiased perceptual noise (e.g., noise
arising from agents’ differing heterogeneous physical or social contexts)
drastically reduces the critical mass of cooperators required for institu-
tional emergence. This effect intensifies with greater diversity of percep-
tions, suggesting that variability among agents perceptions facilitates col-
lective action. We explain this counter-intuitive result through asymmet-
ric boundary conditions: proportional underestimation of low-probability
sanctions produces distinct outcomes compared to equivalent overestima-
tion. Furthermore, the type of perceptual distortion—proportional versus
absolute yields qualitatively different evolutionary pathways. These find-
ings challenge conventional assumptions about rationality in institutional
design, highlighting how "noisy" cognition can paradoxically enhance co-
operation. Finally, we contextualize these insights within broader discus-
sions of multiagent system design, noise and cooperation, and disobedi-
ence and collective action. Our analysis underscores the importance of
incorporating human-like cognitive constraints—not just idealized ratio-
nality—into models of institutional emergence and resilience.

Keywords: Uncertainty · Bias · Institutions · Bootstrap · Evolutionary
Game Theory · Noise · Bounded Rationality
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1 Introduction

1.1 The institution bootstrapping problem

Across human societies, it is difficult to find groups without some form of insti-
tution [24]. Institutions—defined as rule systems enabling sustainable manage-
ment of common-pool resources (e.g., grazing lands, fisheries, or even Minecraft
servers)—help communities avoid antisocial outcomes by regulating individual
self-interest [25, 10]. There are many empirical examples of such institutional
rules empowering groups to avoid anti-social outcomes by regulating individual
self-interest in order to manage the resource sustainably e.g. how much water an
individual may take from a shared irrigation system and how often they must
perform maintenance. Critically, institutions are self-reinforcing: both compli-
ance and active enforcement align collective good with individual incentives, as
demonstrated in foundational studies [24, 25].

However, institutions require sustained effort to create, maintain, and adapt.
Without this, groups risk reverting to default interactions where cooperation col-
lapses. Ostrom’s fieldwork emphasizes that institutions are more likely to endure
when rules are both designed and enforced by the same agents whose actions they
govern [25]. Institutional roles—such as monitoring compliance or coordinating
rule updates—incur costs that must be offset by collective benefits in order for
self interested individuals to join. Recent work formalizes these dynamics [27,
28]. For example, Powers et al [28] use evolutionary game theory (EGT), to de-
rive conditions where institutional participation becomes evolutionarily stable.
For instance, monitoring costs must remain low relative to resource contribu-
tion costs, and institutional roles (e.g., monitors) must be incentivized through
resource-sharing mechanisms [28].

A critical challenge arises even when institutions are theoretically favourable:
the institution bootstrapping problem. As Powers et al [28] notes, institutions
require a threshold of participants to generate sufficient benefits (e.g., monitor-
ing capacity) to justify individual costs. Without this critical mass, free-riding
dominates because early adopters bear disproportionate costs (e.g., monitoring
efforts) without guaranteed reciprocity.

So, if we assume all individuals in a group are not yet part of the institution,
the benefits do not outweigh the costs of joining. Since there are no monitors to
enforce rules on peers and therefore a lesser incentive to contribute as opposed
to free-riding. We term this issue the institution bootstrapping problem. We
consider several explanations for this and possible approaches for alleviating or
completely overcoming the problem, where agents would manage to bootstrap
their way towards the institution despite the incentives against it.

Proposed solutions include extrinsic shocks (e.g., external cooperator influx)
or cognitive factors like cost misperception [28]. Small groups might circumvent
the problem through charismatic leadership or evolved psychological mechanisms
that amplify cooperation e.g. trust [18]. Our approach focuses on relaxing perfect
rationality assumptions in evolutionary game theory by incorporating perceptual



Uncertainty, bias and the institution bootstrapping problem 3

biases and uncertainty in the form of noise inherent to bounded agents operating
in heterogeneous physical/social environments.

1.2 Contributions

Using a evolutionary game theoretic approach we:

1. Explicitly illustrate, for the first time, the bootstrapping problem in a sim-
plex plot.

2. Show that incorporating a coarse bias into how agents perceive the cost of
freeriding, can either decrease or increase the number of cooperators and
monitors needed to establish the institution. With overestimating the risk of
punishment leading to greater cooperation. This holds if we generally assume
that the agents are subject to a loss aversion bias, but given complicated
emerging empirical evidence on how individuals perceive probabilities we
need a more solid empirical foundation to motivate this bias.

3. Show that incorporating a more nuanced S-shaped or inverse-S-shaped prob-
ability distortions from the literature on human psychophysics, we can sim-
ilarly show that this effects the threshold of cooperators needed to establish
an institution. However, limitations due to the individual context of the ex-
periments and task dependency of the effect complicate interpretation. We,
therefore, urge for such psychophysics experiments to take place in a social
context as their implications would matter for the psychology of enduring
institutions.

4. Show that incorporating noisy perception to capture the bounded hetero-
geneity among agents (e.g. their differing social circles and positions in the
physical world) decreases the threshold of cooperators needed to establish
the institution. Interestingly, this is despite the noise being unbiased at the
group level.

5. Explain the above counter-intuitive result in terms of an asymmetric bound-
ary condition where proportionally underestimating very small quantities
is not the same as overestimating them and show that the type of noisy
perception (proportional or absolute), results in different qualitative results.

2 Modelling the institution bootstrapping problem

In this section, we will describe the bootstrapping problem in terms of evolu-
tionary game theory (EGT).

To capture the bootstrapping problem in more concrete terms, we will ex-
press it in the form of a game-theoretic model. Investigating such theories in a
mathematical framework helps us explicitly define our assumptions and system
specifications. It allows us to assess the logic of our ideas and establish whether
they are internally coherent enough to serve as a good candidate explanation.
This added rigour helps us avoid logical errors or missed details due to the
inherent ambiguity of verbal theorizing.
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Further, the abstractions in a mathematical model allow us to capture dy-
namics common across many types of institutions and provide a general under-
standing of how they work without getting lost in details. This gives us a solid
theoretical foundation to subsequently incorporate the specifics of each situation.

We adapt the Powers model of institutions [28], using it to describe explicit
utility functions within an evolutionary game theory (EGT) framework for each
action [34]. EGT evaluates the utility of an agent’s actions, which reflects the
material or psychological consequences of those actions . These utility functions
are then combined with a replicator equation to plot the rate of change in the
relative frequencies of strategies, generating a simplex plot that visualizes popu-
lation dynamics across states (i.e., the number of agents adopting each strategy).

We outline three strategies available to individuals: defector (D), contributor
(C), and contributor-monitor (CM). A defector (D) does not engage in the in-
stitution, undermining it by consuming from the common-pool resource without
contributing (Cc) and avoiding institutional roles. Defectors gain benefits from
the common pool (Bg, Table 1) but incur a freeriding cost (Cf , Table 1) in the
form of punishment from monitors. This cost scales with Nm/N , the fraction of
monitors in the population, reflecting the increased likelihood of being caught
as the proportion of monitors rises (Table 2). It also scales with p, the number
of checks a monitor makes and s, the cost of punishment. This weighted expec-
tation of being punished (Cf , as captured abstractly by a reduction in utility,
models the potential consequences of peer punishment e.g. a material fine, the
feeling of shame or damage to reputation) [32, 23]. This deters individuals from
defecting and maintains social order [23].

The contributor (C) participates in the institution, benefiting from it (Bg,
Table 2) while paying a contribution cost (Cc, Table 2) determined by the pa-
rameter α, which quantifies the individual’s contribution level (Table 2).

The contributor-monitor (CM) also participates and contributes but ad-
ditionally takes on a monitoring role to enforce institutional rules. Like con-
tributors, CM agents benefit (Bg) and pay contribution costs (Cc). Monitoring
incurs an additional cost (Cm, Table 2), which includes effort (e.g., time spent
checking compliance) or risks (e.g., retaliation from punished defectors). These
costs are modelled as p · δ, where p represents the number of monitoring checks
performed, and δ is the cost per punishment instance. Monitors receive a benefit
(Bm, Table 2) proportional to β (the share of common-pool resources allocated to
monitors), α (individual contributions), and Nc/Nm (the contributor-to-monitor
ratio), with larger Nm diluting individual shares.

We have described a system where the consequences of an agents’ actions
depend on facts in the world e.g. the cost of punishment s and the frequency
of other strategies in the population e.g. the amount of monitors determines
how much an agent is punished (Tables 1,2,3). This means the utility of each
individual depends on what other individuals are doing.

The utilities of each strategy (D,C,CM) determine the strategy’s success and
their propagation through the population. In classic EGT this is cast in terms
of genetic evolutionary fitness. But we can also interpret this to be cultural
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Table 1. Table outlining strategies in terms of their role, real world example and utility
payoff in model

Strategy Equation Role Real world examples (local town)

D UD = Bg − Cf
Agent who is depleting common pool resource

but not contributing to it, is punished by monitors
Individual uses public infrastructure

but doesn’t pay to upkeep it

C UC = Bg − Cc
Agent contributing to common pool resource

but not taking on a monitoring role to punish D
Individual uses public infrastructure

and pays to upkeep it

CM UCM = Bg − Cc +Bm −Bc
Agent contributing to common pool resource
and taking on a monitoring role to punish D

Individual uses public infrastructure,
pays to upkeep it

and goes out of their way to punish others who do not

Table 2. Table describing the associated costs and benefits of each action along with
an equation defining it.

Cost or Benefit Meaning Equation

Bg
Benefit from collective
resource of being a member of the group Bg = (1− β) · 1/N · α ·Nc

Cc Cost of contributing Cc = α

Bm Benefit of monitoring Bm = α · β ·Nc/Nm

Cm Cost of monitoring Cm = p · δ

Cf
Cost of free-riding (note that this a expected cost
conditioned on a probability) Cf = (p ·Nm/N) · s

Table 3. Table describing each world parameter that is used to compute the utility of
each strategy

Parameter Meaning Value (to favour
institution)

Value (to not favour
institution)

α Cost of contributing to common pool resource 1 1
β Fraction of common pool resource given to monitors 0.2 0.2
δ Cost of punishment to monitor 0.1 0.5
p Number of checks each monitor makes 5 5
s Cost of being punished 1 1
Nm Number of monitors Dynamic Dynamic
Nc Number of contributors (includes CMs) Dynamic Dynamic
N Total number of agents 20 20
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[a] [b]

Fig. 1. (a) depicts the simplex plot for 3 strategies where the inequality specified by
Powers et al [28] (a mathematical inequality dependent on world parameters that de-
termines whether or not an institution will be formed) is not satisfied and an institution
does not form (b) depicts a case where the inequality from Powers [28] where an in-
stitution does form, however for areas in strategy space closer to all defectors, the
system tends toward all defectors. This means although conditions in terms of param-
eters are favourable for an institution to form, a critical mass of individuals joining
the institution is needed before it will form. Reaching this threshold is the institution
bootstrapping problem. The black circles depict unstable attractors, and the black dots
signify stable attractors

fitness i.e. strategies that are better off would be more likely to be copied by
others through prestige biased social learning [4]. We implement this using the
replicator equation (equation 1).

The replicator equation computes the gradient, for a given group configura-
tion xi. It does this by multiplying the average fitness of a strategy across at
the population at a given group configuration Πi(x) vs the average fitness of all
strategies for that given group configuration Π(x) (equation 1).

ẋi = xi

(
Πi(x)−Π(x)

)
(1)

We can use the replicator equations to plot the direction in strategy space for
each group combination in a simplex and show when agents will tend to the
pro-institution strategies (C and CM) and then they will not (D). We do this
using the library EGTtools [9].

Powers derived conditions under which an institution will endure, expressed
through mathematical inequalities [28]. Specifically, these inequalities compare
institutional benefits against participation costs: an institution endures when
benefits exceed costs.

In Fig. 1, we plot simplexes representing strategy space gradients for sys-
tems that do and do not satisfy these inequalities, illustrating the bootstrapping
problem. Arrows indicate selection gradients, showing the direction of strategy
propagation under evolutionary dynamics. The corners (D, C, CM) correspond
to homogeneous populations (all agents adopting one strategy), while the cen-
tre represents equal strategy proportions. White dots denote unstable equilibria
(system states persisting only without stochastic changes, e.g., imitation errors
during strategy updates). Black dots signify evolutionary stable strategies (ESS),
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robust to perturbations in group composition and therefore cannot be invaded
by another strategy.

In Fig. 1a, the simplex corresponds to parameters predicted to preclude in-
stitutional formation per [28]. Here, institutions fail to form in almost all con-
figurations, with no stable attractor for populations of C or CM. The sole stable
attractor occurs at full defection (D), indicating an institution will not form in al-
most any case and if it does it will be fragile against invasion by non-cooperative
strategies.

Fig. 1b shows parameters predicted to enable institutional formation per [28].
A large region of the strategy space converges toward an ESS for institutional
cooperation (C/CM dominance), where defection yields no advantage. This ESS
resists large perturbations in group composition. However, a smaller region per-
sists where insufficient monitors/cooperators render cooperation non-beneficial,
resulting in a D-dominated ESS. In this region, isolated strategy shifts (e.g., one
agent cooperating) revert to D due to lack of collective incentives.

Thus we have captured the institution bootstrapping problem: despite the in-
stitution being beneficial to join, if the system starts in an initial non-cooperative
situation (which is an equilibrium), agents need a catalyst to be able to boot-
strap the creation of institutions, which can then lead to socially preferable,
sustainable outcomes (also shown to be an equilibrium).

3 Incorporating perception into social simulation, an
unlikely solution to the bootstrapping problem?

How do we get around the bootstrapping problem? One can assume an influx
of cooperators/monitors to the group which then incentivises others to join, or
a strong leader type emerges which forces the requisite number of individuals
to join to incentivise institution formation [28]. However, an unexplored avenue
in addressing this problem may come from incorporating facets of human psy-
chology into social modelling, which would then allow us to try an unorthodox
approach: Can agents merely pretending an institution exists, make it a reality?

We will now try to alleviate the bootstrapping problem by questioning the
cognitive assumptions of EGT.

As seen in the equation for the expected cost of freeriding Cf (Table 2), it
assumes a perfect perception of what would often be hidden variables e.g. the
number of checks a monitor makes p or the amount of monitors in the population
at any given time.

It is very difficult for bounded agents with noisy perception to have a perfect
estimate, in most cases they often resort to heuristics in the form of biases [36,
33, 13]. Emerging work in game theory and social simulation [20, 37], shows that
bringing even simple psychological facets in can change the predictions of game
theory and the dynamics of agent based models [20].

We focus on bias in the literature of social modelling and evolutionary game
theory.
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Firstly there is work showing that bias, even though it may be misrepresenta-
tive of reality, may be advantageous to individuals. For example, in a frequency-
dependent hawk-dove game, where the prevalence of doves and hawks influences
strategic payoffs, overestimating the reward of a hawk action can mislead un-
biased individuals into perceiving their own actions as less advantageous. As
a result, they alter their behaviour, indirectly benefiting biased hawk-strategy
players, who now face fewer competitors [21]. Similarly, in resource competition,
individuals who are overconfident in their ability to compete are evolutionarily
stable across a wide range of environments, particularly under uncertainty [14].

In the above cases, even though biased individuals were better off, bias was
detrimental for group utility, but there are also cases where it is beneficial for
the group as well. For example, Vogrin et al [37] show that having a bias en-
hances performance in a signal detection task and suggest that in multiple agent
settings, different agents can do a cognitive division of labour by specialising in
different signals thus promoting discourse and a broader investigation of problem
spaces. Therefore being beneficial to the whole group. Davies et al [6] show that
incorporating an adaptive bias in how one’s utility is perceived in a coordination
problem can change the attractor landscape of a system, widening the basin of
the global optimum and therefore making it more likely for collective systems to
arrive at the global optima and therefore benefit all. We hope to apply similar
tactics to enlarge the cooperative attractor/reduce the number of individuals
needed to set up an institution, in our scenario.

4 Experiments

We modify the expected cost of freeriding Cf in various ways by biasing the
value away from the perfect expected probability to model cognitive biases and
aspects of an agent’s perceptual uncertainty (noise) and boundedness.

1. Coarse grained bias: bias perception of Cf (expected cost of freeriding) by
multiplying by 0.75 or 1.5 (for under or over-estimating)

2. Distorting perception of extreme probabilities: The inverse S and S shaped
probability distortion curves are modelled by the Prelec function, given by
π(p) = e−ζ(− ln p)λ , where π(p) represents the subjective probability, and p
is the objective probability within the range (0 < p ≤ 1). The parameter
λ controls the curvature of the function: if λ < 1, the function follows an
inverted-S shape (we used 0.8), meaning small probabilities are overweighted
while large probabilities are underweighted; if λ > 1, (we used 1.2) the
function follows an S-shape, where small probabilities are underweighted and
large probabilities are overweighted. The parameter ζ adjusts the elevation
of the curve, typically set to 1 in standard applications.

3. Noise (proportional), here we sample equally above >1 and <1 when doing
the fitness calculations in order to simulate a noisy perception as would occur
with agents bounded by individual and social context. noise ∼ U(a, b) which
is then multiplied by Cf
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4. Noise (absolute): Here we do the same as 3 but we add the noise so it is
absolute (we add or subtract in the given range).

4.1 Moran process for simulating finite populations

To model these effects of noisy bias we need a stochastic payoff for the defect
strategy, which is not possible in a replicator equation as they assume infinite
populations and are deterministic.

Therefore, we will be using a Moran process, which assumes finite populations
and therefore allows for stochastic effects.

We use the library EGTtools to implement the Moran process [9]. For smaller
population sizes, stochastic effects dominate, necessitating discrete birth-death
processes to model behavioural dynamics. This framework introduces the fi-
nite population selection gradient G(k/Z), defined as the difference between
probabilities of incrementing or decrementing a strategy’s count, stochasticity
intensifies with behavioural “mutations” (e.g., imitation errors).

We model social learning dynamics via a stochastic birth-death process paired
with a pairwise comparison rule. At each timestep, a randomly selected individ-
ual j (strategy j) revises their strategy by potentially imitating a randomly
chosen individual i. Imitation probability p follows the Fermi function:

p =
1

1 + eγ(fi(ki)−fj(kj))
(2)

where fi(ki) and fj(kj) denote the fitness of individuals i and j, dependent on
their strategy abundances ki and kj . Due to finite populations, absolute counts
ki replace frequencies xi, where xi ≡ ki/Z.

Here, γ (inverse temperature) modulates selection intensity and imitation
accuracy: γ → 0 induces near-random drift; γ → ∞ renders imitation deter-
ministic. A mutation rate µ allows random strategy exploration. Collectively,
this adaptive process forms a Markov chain with state transitions governed by
strategy fitness and abundance. For specifics, see [9].

5 Results

5.1 Coarse bias

Due to limited cognitive resources, agents usually rely on imperfect but frugal
heuristics e.g. loss aversion heuristic [19, 36].

We incorporate such a bias into our model as a proportional bias on the Cf

and see if this changes the attractor landscape and helps address the bootstrap-
ping problem.

We see in Fig.2b, where agents overestimate the risk of being punished, that
the defector attractor indeed shrinks, making it easier for influxes of cooperators
or other extrinsic shocks of the system to be able to meet the critical mass of
joiners needed to form an institution. For the sake of completeness we show in
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Fig.2c that underestimating the risk leads to a larger defective attractor, and
therefore it makes it harder for institutions to form.

It has been shown empirically that humans overestimate unlikely punish-
ments due to loss aversion bias [19, 36], which then would help institutions form.
Further, evidence shows that humans overestimate vivid but rare risks e.g. as
can be induced by media sensationalism [35]. This could explain why public pun-
ishment/moral panics are effective ways to influence people to join institutions.
We could then argue this general risk aversion evolved and was then co-opted for
institutions. However, more work has been done on bias that complicates this
picture of human bias [36, 38]. We will incorporate this work in the next section.

[a] [b] [c]

Fig. 2. (a) Control (b) Agents overestimate the expected cost of punishment (c) Agents
underestimate the expected cost of punishment

5.2 Bias in the form probability distortion

Empirical work has also shown that humans often distort their perception of
probabilities at the extremes in a non-linear manner (i.e. distort very small
and very large probabilities) [38]. This results in either an inverted S shaped
distortion (overvalue small probabilities and underestimate large ones) or an S
shaped distortion (undervalue small probabilities and over estimate large ones).
We incorporate S and inverse S distortion from the experimental literature into
our model to see what how it effects the likelihood of institution formation.

Under the inverted S distortion, similar to the coarse overestimation bias,
we see an increase in the size of the attractor for cooperation, which therefore
makes cooperation more likely. When we have an inverted S distortion and a
decrease in the size of the cooperative attractor when it is S shaped, which makes
cooperation more unlikely (Fig.3). This is interesting as it suggests incorporating
these findings from psychophysics into game theory changes collective outcomes.

However, despite its more detailed empirical grounding, the result here is
hard to interpret as it hinges on which curve (S or inverse S) humans use when
forming institutions. The empirical evidence for this is not clear cut. For example,
it seems that use of S or inverse S shaped curves are heterogeneous in population,
so not everyone has the same shape. Secondly, it also depends on type of task i.e.
motor decision task vs abstract economic decision task [38]. Furthermore, social
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contexts can change outcomes e.g. when people are told they are playing a game
with people vs a computer their behaviour changes [29] and whether a participant
can see if they are playing against a real person or not also affects behaviour
[7]. Such experiments on probability distortion have not been been attempted in
a truly social setting. Therefore understanding the relation between probability
distortion and collective outcome is not straightforward.

[a] [b] [c]

Fig. 3. (a) Control (b) Agents obey an inverted S shape distortion in how they estimate
expected punishment (overestimate small probabilities and underestimate large ones)
(c) Agents obey an S shape distortion in how they estimate expected punishment
(underestimate small probabilities and overestimate large ones)

5.3 Noise (bounded uncertainty)

Given the difficultly of interpretation of empirical results to our institution boot-
strapping problem. We now attempt to motivate this in an alternate fashion us-
ing the inherent uncertainty brought about because individuals are bounded by
their local context. It has been established that individual agents are bounded
[33] and often limited to the information around them. Therefore they often an-
chor on local estimates and recent experiences e.g. people who know someone
with cancer have higher estimates of its prevalence [33, 26]. These estimates are
subject to noise for a host of different factors e.g. different life experiences, af-
fective make ups of each individual, social networks, social media bubbles e.t.c
[35, 15, 26].

In our model, an agent may be very optimistic with respect to being pun-
ished based on its life experience, and may have been lucky enough not to have
been punished before and be in a social group that either doesn’t get punished
very often or doesn’t like advertising it to others. This would make the agent
relatively optimistic with respect to the dangers of punishment (underestimates
risk). Alternately, another agent could have been punished quite a few times
and be in a social group that gossips about punishment often, leaving it with
a rather bleak estimate of how likely it is to get punished (overestimates risk).
Because of the uncertainty inherent in being bounded agents have to anchor
on local cues which results in a spectrum differing estimates of being punished
across the population.
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To model the inherent uncertainty of individuals bounded by different con-
texts and noisy perception, we represent it as a uniform distribution of biases
(away from the perfect estimate) across the population. Note that this is not the
same as all individuals population having the same bias as in previous sections,
here each individual has different bias determined by their local social and physi-
cal context. Further, there is no skew in the bias at the population level, all noisy
estimates even out to be an accurate unbiased group estimate, as supported by
collective intelligence studies [11, 17, 16].

To model this, we need a stochastic payoff for the defect strategy. To do
this we sample uniformly for in a number in a range with 40 samples (equal to
population) centred at one. Which is then multiplied by Cf so that effectively
each agent has their own estimate of the expected cost of freeriding, with equal
chances of them under or over valuing the probability of being punished.

We see that, surprisingly, under this noise, cooperative attractors are larger
(Fig.4). This doesn’t solve the bootstrapping problem completely but means
stochastic extrinsic shocks e.g. strong man mutation or an influx of cooperators
more likely to trigger an institution to be formed. This is striking because the
system is not biased in any particular direction and despite this still favours
cooperation i.e., the institution being formed. This means that solely taking into
account this fact of being a bounded agent in a noisy world increases the chances
of an institution being formed.

The effect is more extreme for a larger range of noise, suggesting that a more
diverse range of perceptions, due to the numerous factors affecting perception,
further increases cooperation (Fig.4c).

Why does unbiased noise lead to a biased outcome? Despite the noise’s
unbiased nature, there is an asymmetry in the system. This is due to the pro-
portional nature of the bias. To create a bias for each agent we either make
them underestimate the expected cost of being punished by taking the product
of a value less than 1 or above 1 to overestimate. Underestimating bias when
the number of monitors is near zero does not change the estimate much, but
overestimating has a larger net effect. This effect does not exist on the other
side of the range (when there are many monitors) since there isn’t a limit on
how high one can overestimate.

5.4 Absolute noise (bounded uncertainty)

In the above section, we described the effect of a noisy proportional bias where
the utility of an action is either over or under-valued in a proportional man-
ner, but we could also implement this as absolute noisy perception, where an
absolute value is added or subtracted to the utility of an action to produce a
noisy expectation i.e. it can be in a range -8:8, -16:+16 which is added to the
Cf estimate.

Under absolute noisy bias, we get a qualitatively different effect emerging
(Fig.5), instead, it seems that the shifts in strategy space just become more
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[a] [b] [c]

Fig. 4. (a) Control (b) noisy perception in range [0.25:4] centred at 1 (c) noisy per-
ception in range [0.125:8] centred at 1. Note that due to the stochastic nature of the
moran process used to model these dynamics, we cannot derive stable and unstable
attractors (denoted by black and white dots) as we could with the deterministic repli-
cator equation used in figures 1-3.

uncertain. We see that regions are more mixed and certain regions in strategy
space that are far away from each other are more likely to be linked. This kind
of noisy bias can help solve the bootstrapping problem since it can result in
sudden shifts from non cooperative to cooperative equilibria. However, there
would need to be a mechanism to reduce noise in estimates once a cooperative
state is reached, to prevent the institution falling apart due to noise.

[a] [b] [c]

Fig. 5. (a) Control (b) absolute noisy perception range [-8:8] (c) absolute noisy percep-
tion range [-16:16]). Note that due to the stochastic nature of the moran process used
to model these dynamics, we cannot derive stable and unstable attractors (denoted by
black and white dots) as we could with the deterministic replicator equation used in
figures 1-3.

6 Discussion

6.1 Summary

Even when an institution is favourable to the individuals that constitute it, there
is still the issue of meeting the critical mass of people joining it to incentivise its
creation: no one wants to join and then be let down by no one else joining. We
call this the institution bootstrapping problem.

To overcome this problem, we ask, what if the perceptual make-up of indi-
viduals makes them more likely to join an institution? And can merely believing
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an institution exists, be enough to create it? Incorporating the psychological
literature of subjective probability estimation and cognitive biases, we relax the
assumption of perfect perception in game theory to investigate this. We show
that a coarse bias in the subjective probability of being punished can make
an institution either more likely or unlikely to form, this depends on whether
agents have a bias that makes them either over or underestimate the subjective
probability of being punished.

Further, we incorporate empirical work from psychophysics [38] which shows
that individuals distort probabilities at the extremes of the range, biasing sub-
jective probability of events when they are either highly unlikely or highly likely.
We incorporate this and show that it also influences the threshold of monitors
needed to form an institution in a similar fashion to a coarse grained bias. How-
ever, as described in the results, empirical work is unclear concerning how these
biases work in social settings [38, 29].

We also find, that surprisingly, having a noisy perception across the popu-
lation (no bias at group level), which is equivalent to individuals being biased
by their bounded position in social and physical world, lowers the threshold of
individuals needed to start and institution. Therefore this bounded noise is ben-
eficial for forming a cooperative institution. Just the bare bone limitations of
being a bounded agent embedded in a social world (hence noise) increase the
chance of institutions being formed and make them more robust. This is if the
noisy perception is proportional, however, if it is absolute, it generally makes the
system more likely to shift states in an unpredictable manner (either to form an
institution or not). This can be useful, however, there would need to be a way to
eliminate this noisy absolute bias once the system is in a cooperative state i.e.
agents would need to agree on a ground truth when conditions are favourable
for cooperation.

Moreover, by relaxing game theory’s assumptions, which describes phenom-
ena with group level State Variable Models (SVM) [34] e.g. average expected cost
of free riding. We show, that even if you have a noisy uniform perception that
cancels out and is therefore equivalent to the game theoretic SVM, the variance
of perceptions can still change the outcome of the analysis.

6.2 Implications of this finding

Our findings suggest that: making agents have a more accurate estimate of the
world, although it seems an intuitively good idea, may make them less likely
to form an institution. Uncertainty and boundedness are therefore important to
have. This rings true with other findings in other contexts which also stipulate
that not having perfect information may be better for collective outcomes [31,
37, 6].

Further, we assume in this paper that the institution is good and benefits
all agents who join it. But there may also be the case where agents may have
been fooled into joining an institution that begets some but hurts others e.g. a
corrupt institution where monitors take the collective resource for themselves. In
this case, how would agents disobey an unjust institution [5]? In these cases, you
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may want perfect/better information and for agents to agree with one another
in order to rise up against the institution. This could be done if bounded agents
come together by combining their estimates and taking the mean/median, as
done in collective intelligence studies [16], and then, if they all use this group
estimate in their decision-making, overcome a corrupt institution.

Furthermore, we can connect our model to collective action models [12] e.g.
voting, taking political action, or protesting. If we interpret the cost of con-
tributing as the cost that may be involved in collective action e.g. group effort,
personal sacrifice e.t.c. then noise (bounded uncertainty) makes the institution
(collective action) more likely, and having too much information (or too accurate
an estimate) makes things hopeless, and agents stop trying to join the collective
action. This corroborates well with Herbert Gintis’ argument [12] that rational
actors with perfect information are less likely to act since they perceive their
actions will make no difference in large groups. He than asks: why do we see
collective action even when it is irrational? Gintis then argues, drawing from the
anthropological literature, that humans have an evolved bounded psychology
that is tuned for small groups which changes their estimates of making a differ-
ence at the collective level and, therefore, explains the prevalence of collective
action in human societies.

In conclusion, as shown in this paper, cognitive limitations of agents may
actually be a benefit rather than a hindrance. Our general model can thus serve
as an initial template to asses the impact of cognitive biases and uncertainty in
more specific cases of institutions in socio-technical systems e.g. shared online
servers, data sharing systems, and neighbourhood power cooperatives [32, 23,
22].

6.3 Our results contradict the conventional wisdom that noise is
detrimental to cooperation

Early influential game theoretic and agent based models showed noise is delete-
rious for cooperation and leads to a breakdown of the tit-for-tat mechanism as
it leads to rounds of mutual defection [3, 2].

Further, in an empirical study show that Salahshour et al [30] show that
stochastic punishment (in this case the punishment factor - how much the fine is
multiplied, which would be equivalent to having a noisy s in our model) reduces
group contributions to the game and encourages more antisocial punishment
(punishment of cooperators instead of defectors, which in turn disincentivises
cooperation).

This discordance in our current paper about the positive collective benefits of
noise may be explained by the fact that in our model, it is not noise in the pun-
ishment, but noise in the perception of the expected punishment that seems to
engender cooperation, which is an important difference. These contextual factors
make it hard to make general statements on the effects of noise on cooperation,
one way or another. The nuance of uncertainty and noise and its non-trivial
impact on norms and institutional emergence should be considered in the design
of normative multiagent systems [32, 23, 22].
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6.4 Limitations and extensions

So far we only have only one expected value in our model (expected punishment).
However, there are other world variables that agents could have biased or noisy
perceptions of e.g. cost of monitoring/cost of contribution. This can be altered
in an agent based model, where it is possible to dissociate perceived and real
payoff as in [21]. This allows the exploration of what factors in the population
e.g. scarcity of resources lead to which biases/noise to evolve e.g. loss aversion
bias [19, 1]

Further, although using EGT is a rigorous way to study the value of choices
in a social environment and hence the direction in strategy space the system will
move in. It stays agnostic to complex behaviours and interactions between in-
dividual and population-level dynamics. Agent-based models have the ability to
capture complex behaviours and interactions in executable form, and to explore
emergent phenomena simply by "running” variants of the model [8].

For example, a candidate mechanism for why uncertainty may encourage the
joining of institutions: an initial proportion of individuals with noisy perception
will be biased towards overestimating the probability of being caught, they will
change their behaviour, which will in turn cause others who are less biased
to do the same since there will now be more members in the institution, this
process repeats instantiating a feedback loop that allows agents to bootstrap to
cooperation.
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