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Abstract. In the realm of game theory, mixed-motive games represent a
subset of games where the interests of players are not entirely aligned nor
entirely opposed. This duality often leads the system to a state known as
the collective action problem, when individuals systematically prioritize
their own rewards as opposed to greater group rewards. This problem
normally occurs in mixed-motive games in the real world because people
are generally good at responding to individual incentives and, with the
emergence of learning techniques such as reinforcement learning, so are
becoming agents in MAS. In our previous work [8], we proposed a frame-
work composed of several learning agents, whose actions were regulated
by a regulator agent to prevent the collective action problem in mixed-
motive MAS when the following two conditions are not guaranteed: a)
most agents in the system, more often than not, act in favor of the group
instead prioritizing their own rewards, and b) agents are allowed to inflict
non-negligible harm to other agents in order to punish defective behav-
ior. In this new work, we present two experiments in order to test the
effects that two variables have on the system’s outcome; the frequency
in which the regulator updates the system’s norm and the harshness of
the punishment given to agents that violate such norms. We show that
higher update frequencies and harsher punishments tend to yield better
outcomes.

Keywords: Reinforcement learning · Normative multiagent systems ·
Mixed-motive games.

1 Introduction

In the realm of game theory, mixed-motive games represent a subset of games
where the interests of players are not entirely aligned nor entirely opposed. These
games are distinguished by two fundamental properties [10]: a) each player has
an incentive to pursue a strategy that may be advantageous for their individual
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well-being but that can lead to suboptimal collective outcomes; and b), the col-
lective welfare of all players is maximized when they cooperate. These conflicting
incentives between self and group can lead the whole system to an unfavorable
state known as the collective action problem [26].

One classic example of the collective action problem in the real world is the
provision of public goods. In urban life, we are all indirectly responsible for the
maintenance of our roads, public spaces, and services such as the police and
the fire brigade through the payment of municipal taxes. We, as individuals,
have the monetary incentive to benefit from the collective efforts of others while
contributing minimally or not at all (free-ride)3. If one person does so, it is likely
that the impact on the city’s public goods and services won’t be substantial.
However, if a significant portion of the population tax evade, it will be difficult
for the city’s administration to secure sufficient funding to sustain the provision.

The collective action problem is not particular to communities of people in
the real-world, it may also happen in multiagent systems (MAS). This issue
becomes more pronounced in MAS with the advent of new learning technologies
such as reinforcement learning (RL), because as agents’ learning capabilities
increase, so increases their ability to optimize for their own benefit, which is
reminiscent of the motto "people respond to incentives" [22], that is the root
cause for the collective action problem in our societies.

Social norms and norm enforcement mechanisms are tools of an institutional
machinery that can be used for governing mixed-motive systems in order to
prevent such problem [34]. These can be implemented in a centralized way —
when a central governing authority is responsible for the provision of norms and
norm enforcement — or in a decentralized way — when the normative system
is sustained by its agents.

Decentralized approaches share the benefit of not relying on a centralized
entity to sustain the normative system nor the burden that may be norm de-
signing and accurately predicting how the system will behave afterwards. That
being said, these approaches depend on at least one of two basic assumptions,
which may not hold for every mixed-motive system: a) most agents in the system
will act pro-socially for the majority of the time instead of optimizing for their
individual rewards, or b) it is allowed for agents to inflict non-negligible, direct
or indirect punishment to other agents, in order to punish defective behavior.

We draw a parallel to a real-world scenario in order to further this point.
Consider the case of burglary. In theory, this problem could be solved in case
everyone acted pro-socially and no stealing ever took place, but this is not a fea-
sible solution since we have no control over the intentions and actions of others.
Another possible solution would be to punish stealing in order to discourage it,
by means of physical altercation for instance, but this would not be a desirable
solution since it could compromise the safety of those involved. Apart from these,
what else could a victim of burglary do to prevent it from happening?

In case we cannot safely assume agents will act pro-socially, nor it is desirable
for agents to retaliate against each other, we may need to resort to an overseeing

3 Assuming we wouldn’t pay a fine for doing so.
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entity to regulate the system, which is a solution regularly adopted to solve
problems such as burglary in the real-world.

This work further explores a general purpose framework proposed in our
previous work [8] to steer mixed-motivated MAS out of socially bad outcomes
when assumptions a and b cited above do not necessarily hold. We extend such
work by testing how the system behaves when two of its variables vary: a) the
frequency in which the regulator changes the norm and b) the fine multiplier,
a variable that controls the harshness of the fine applied once the norm is vio-
lated. Another contribution of this work is an enhancement of the formal model
previously introduced.

2 Previous work

Our previous work [8] proposes a norm-enhanced Markov Game (neMG) model,
where a Markov Game environment is augmented with normative information. In
this model, a regulator agent monitors the system and adjusts its norms based on
system-level metrics to maximize the system’s collective outcome, while players
act according to their interests to maximize their own outcomes. The model was
demonstrated through a simulation of the "tragedy of the commons" game [16],
where multiple agents compete for a shared resource. The simulation showed
that, with the regulator in place, agents learned to cooperate by adhering to
the norm, preventing resource depletion and achieving a more sustainable and
better outcome.

3 Related work

The idea of regulating systems of heterogeneous agents through a formal insti-
tution is about as old as the problem of attaining social order from local actions
and interactions [7]. One significant advance in crafting a framework for social
control involved the introduction of electronic institutions (EI) [25, 13, 12]. These
institutions, in addition to their various other provisions, establish a set of reg-
ulations that govern the actions agents within the system should or should not
take in predefined circumstances. They are inspired, and play a similar role to
the one traditional norm-setting institutions play in real-world societies [3].

Though an important step, EIs had some limitations when compared to real-
world institutions. For once, EIs were conceived at design time and were not
capable of evolving over time [4]. This issue presented some challenges for their
adoption since a) regulating complex systems is a hard task, especially when
the rules of the game are set a priori, and b) because conceiving fully functional
EIs at design time is hard, a desirable property of software may be lost, i.e., the
deployed system may not be self-managed.

This latter issue gave birth to the proposal of an autonomic electronic insti-
tution (AEI) [4, 3], that, as the name suggests, is an electronic institution with
autonomic capabilities (norm-evolving at run-time). The main objective of an
AEI is for the institution to accomplish its goal by iterating through a two-step
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process of assessing goal adherence, and adapting the system’s norms in case it
is not, through the use of an evolutionary algorithm.

The RL community has also seen its fair share of proposals for solving the
collective action problem in mixed-motive multiagent reinforcement learning
(MARL) environments. That being said, its take on the problem differs from
that of the MAS community previously presented in that most of its propos-
als have tackled the problem from a decentralized perspective; their solutions
involve tailoring agents’ architectures or capabilities to the specific needs of
mixed-motive games.

These solutions can work just fine in closed systems, where one has control
over the agents being deployed, or even in systems where agents are allowed
to punish each other, but not as much in open systems where firm retaliation4

is not allowed. They can be generally grouped in two: strategies that leverage
reciprocity mechanisms, where agents learn to punish defective behaviors, and
pro-social intrinsic motivation strategies, that reward agents for pro-social be-
havior.

Reciprocity has been a notorious strategy for agents in mixed-motive games
since the days of the Axelrod’s tournaments [1, 2]. This strategy is as simple as
it is effective, an agent playing a reciprocity strategy defects when it recognizes
antisocial behavior and cooperates when it recognizes pro-social behavior.

These strategies have been implemented in RL agents by simply adding the
capability of firmly punishing others to the agents’ set of actions. By doing
this, agents were capable of learning to reciprocate through self-play. Among
the works that have leveraged reciprocity mechanisms to combat the collective
action problem in mixed-motive MARL, we highlight those of Pérolat et al. [27],
that implemented agents with the ability of tagging other agents out of the game
for a period of time, Lerer and Peysakhovich [19], that implemented agents with
two switchable policies, one fully cooperative and one fully defective, and Eccles
et al. [11], that implemented reciprocity through imitation.

Another active avenue of research is to deviate from the rational egoist model
and endow RL agents with pro-social intrinsic motivation. Traditional RL agents
learn through the rewards given by the environment. This reward can be regarded
as extrinsic, i.e. the reinforcement is given to the agent as a signal of how well it
is solving a problem of clear practical value [30]. Conversely, intrinsic motivation
can be modeled as a term that composes the agents’ rewards together with the
extrinsic; this can be understood as a reward that is not related to the specific
task in hand, but is rather earned because it is inherently enjoyable [30].

Intrinsic motivation can be used as a way to model complex abstract pat-
terns such as morality and empathy. Among the works that leverage pro-social
intrinsic motivation to deal with the collective action problem in mixed-motive
environments, we highlight those of Hughes et al. [17], that incorporated inequity
aversion preferences in RL agents, Peysakhovich and Lerer [28], that modeled

4 By firm retaliation we mean that the punishment inflicted by one agent to another
is not negligible.
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pro-sociality by including other agents’ rewards as agents’ intrinsic motivation,
and Jaques et al. [18], that used intrinsic motivation to model social influence.

The proposed work is similar to the AEI framework in that it addresses most
of the same problems (social order in MAS) by leveraging the use of norms, but
different in that it uses RL for norm adaptation instead of an evolutionary algo-
rithm. In doing so, it deviates significantly from those solutions put forward by
the RL community; it does not assume anything about the agents’ architectures
nor that they are able to punish each other.

4 Normative MAS and the ADICO grammar of
institutions

MAS hold many similarities with human societies in that, like us humans, agents
may have heterogeneous preferences and may differ in how they assess their
surroundings and act toward their goals. As such, MAS may also be subject to
the harmful symptoms commonly found in mixed-motive human systems such
as miscoordination, collusion, and negative externalities [22].

One way of preventing these issues both in the real-world and in MAS is
through the use of regulation and oversight. Such apparatus involve the cre-
ation of norms that dictate the socially desired behavior of agents, as well as
the establishment of oversight bodies that ensure that these norms are being
followed.

A norm enhanced MAS can be regarded as a normative multiagent system
(NMAS), i.e. a MAS in which norms and normative concepts may influence its
overall outcome [24]. In these settings a norm is typically understood to be a
standard or guideline that is widely accepted and expected to be followed within
a particular group or society [33].

Within the context of NMAS, failing to adhere to the prevailing norm could
lead to sanctions. These can be broadly categorized as direct material sanctions,
that have an immediate negative effect on a resource valued by the agent, such
as fines, or indirect social sanctions, like damaging the agent’s reputation, which
can shape its future standing within the system [6].

Such normative systems can be arranged either in a centralized or distributed
manner [20]. They differ in whether the normative machinery is sustained and
enforced by a single entity — be it an agent or an organization — (centralized),
or not (distributed).

In order to formalize the conception of norms, Crawford and Ostrom [9]
proposes the ADICO grammar of institutions. The grammar is defined within
the five dimensions:

– Attributes: is the set of variables that specify the individuals or entities to
whom the norm is applicable.

– Deontic: is a placeholder for the three key modal operations derived from
deontic logic: may (indicating permission), must (indicating obligation), and
must not (indicating prohibition).
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– Aim: describes a specific action or a collection of actions to which the deontic
operator is assigned.

– Conditions: defines the contextual factors that determine when, where, how,
and under what circumstances an action is deemed obliged, permissible, or
forbidden.

– Or else: describes the sanctions in the event of non-compliance with the
norm.

This grammar can be useful to turn the somewhat abstract concept of a norm
into something tangible, and to operationalize the norm creation and norm revi-
sion processes. For instance, the norm All citizens, who earn more than 30,000
dollars per year, must pay income tax at the beginning of the year, or else he/she
will have to pay a fine of 1,000 dollars5 can be broken down into: A: All citizens
who earn more than 30,000 dollars per year, D: must, I: pay income tax, C: at
the beginning of the year, O: will have to pay a fine of 1,000 dollars.

5 Reinforcement learning and multiagent reinforcement
learning

5.1 Reinforcement learning (RL)

The reinforcement learning task outlines the journey of an agent as it engages
with an environment, receives positive or negative feedback for its actions in
the form of rewards, and learns from them. This general description can be
formalized through the Markov decision process (MDP), defined in the following.

Definition 1. A Markov Decision Process (MDP) is defined by the ⟨S,A,R,P, γ⟩
tuple, where

– S represents a finite set of environment states;
– A, a finite set of agent actions;
– R, a reward function R : S × A × S → R that defines the immediate —

possibly stochastic — reward an agent gets for taking action a ∈ A in state
s ∈ S, and transition to state s′ ∈ S thereafter;

– P, a transition function P : S ×A× S → [0, 1] that defines the probability
of transitioning to state s′ ∈ S after taking action a ∈ A in state s ∈ S; and

– γ ∈ [0, 1], a discount factor of future rewards [31, p. 47].

In this context, the agent’s primary objective is to maximize its cumulative
expected reward over the long term, denoted Gt. This cumulative reward can be
computed as the discounted infinite sum of rewards: (Rt+1 + γRt+2 + γ2Rt+3 +
...+γnRt+n+1). Solving an MDP involves finding an optimal policy π∗ : S → A,
i.e., the best action to take at each state — the action a that corresponds to
the highest long-term expected reward Gt subject to the discount factor γ at a
given state s.
5 This is a hypothetical scenario
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5.2 Multiagent reinforcement learning (MARL)

Multiagent reinforcement learning (MARL) refers to the set of RL tasks where
multiple agents — two or more – co-exist and interact with an environment and
with each other. The MDP counterpart in MARL is the Stochastic Game or
Markov Game [21], defined in the following.

Definition 2. A Markov Game (MG) can be formally defined by the 6-tuple
⟨N ,S, {Ai}i∈N , {Ri}i∈N ,P, γ⟩, where

– N = {1, ..., N} denotes the set of N > 1 agents;
– S, a finite set of environment states;
– Ai, agent’s i set of possible actions.

Let A = A1 × ...×AN be the set of agents’ possible joint actions. Then

– Ri denotes agent’s i reward function Ri : S ×A× S → R that defines the
immediate reward earned by agent i given a transition from state s ∈ S to
state s′ ∈ S after a combination of actions a ∈ A;

– P, a transition function P : S×A×S → [0, 1] that defines the probability of
transitioning from state s ∈ S to state s′ ∈ S after a combination of actions
a ∈ A; and

– γ ∈ [0, 1], a discount factor on agents future rewards [36].

From an agent’s point of view the goal remains the same as in the traditional
RL case; to maximize its long term cumulative expected reward. Still, one key
difference between RL and MARL lies on the fact that the environment transi-
tions to a new state as a function of the combined actions of all agents on the
latter, as opposed to the former, where it transitions solely as a function of one
agent’s action.

As a result, a game theoretic aspect which is central to multiagent systems is
added to the system. Since the environment transitions as a function of the joint
actions of all agents, an agent has to optimize its policy not only with respect
to the state of the environment, but also, relative to the joint policy of all other
agents in the system.

6 A Norm-enhanced Markov Game

We further formalize the norm-enhanced Markov Game (neMG) model proposed
in our previous work [8]. A neMG comprises two types of RL agents: N > 1
players and one regulator. Players are simple RL agents, analogous to the ones
that interact with regular versions of MG environments, with the difference that
they are aware of the norm of the game, which is available to them as it is
part of the environment’s state. The regulator, on the other hand, is able to act
exclusively on the environment’s norm at a predefined frequency measured in
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terms of players’ steps, which we refer as a period. This agent senses the state
of the environment through a social metric — i.e. a system-level diagnostic —
and the efficacy of its actions is signaled back by the environment as a reward
based on the system’s social outcome.

Definition 3. Let ⟨N ,S, {Ai}i∈N , {Ri}i∈N ,P, γ⟩ be the regular version of the
Markov Game to be enhanced. Then, a norm-enhanced Markov Game (neMG)
can be formally defined by a 13-tuple ⟨ϕ,Np,Sp, {Ai

p}i∈Np
, {Ri

p}i∈Np
,Pp, γp,m,

Sr,Ar,Rr,Pr, γr⟩, where

– ϕ denotes the neMG’s set of possible norms;
– Np = N denotes the set of N > 1 players;
– Sp = S × ϕ, the players’ finite set of environment states;
– Ai

p = Ai player’s i set of possible actions.

Let Ap = A1
p × ...×AN

p be the set of players’ possible joint actions. Then

– Ri
p denotes player’s i reward function Ri

p : Sp×Ap×Sp → R that defines the
immediate reward earned by player i given a transition from state sp ∈ Sp

to state s′p ∈ Sp after a combination of actions ap ∈ Ap;
– Pp, a transition function Pp : Sp×Ap×Sp → [0, 1] that defines the probability

of the players’ environment transitioning from state sp ∈ Sp to state s′p ∈ Sp

after a combination of actions ap ∈ Ap;
– γp ∈ [0, 1], a discount factor on players future rewards;
– m ∈ N, the amount of players’ steps per period;
– Sr, the regulator’s set of states;
– Ar, the regulator’s set of actions;

Let rij denote the reward earned by player i at a relative time step j of a given
period6, and n the number of players in a neMG. Then

– Rr denotes the regulator’s reward function Rr =
∑n

i=1

∑
rij

7, that deter-
mines the immediate reward earned by the regulator at the end of a period
given by the sum of all players’ rewards over that same period;

– Pr, the normative transition function Pr : ϕ × Ar → ϕ that defines norm
update following a regulator’s action; and

– γr ∈ [0, 1], the regulator’s discount factor.

Following this definition, a neMG can be executed through two distinct RL
loops: one relative to the regulator at the outer level, and another relative to
players at the inner level. Algorithm 1 exemplifies how these could be imple-
mented.
6 e.g. r23 refers to the third reward earned by player 2 within the period.
7 ∑

rij refers to the sum of rewards earned by player i in the given period.
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Algorithm 1: neMG Pseudocode
1 algorithm parameters: number of players (n), steps per period (m);
2 initialize policy and/or value function parameters;
3 foreach episode do
4 initialize environment (set initial states sr0 and sp0);
5 foreach period do
6 regulator adjusts norm (ϕ) by consulting its policy πr in state sr;
7 for m steps do
8 set current player i;
9 current player acts based on its policy πi

p in state sp, state
transitions to s′p, player observes its reward rip, and updates its
policy πi

p;
10 end for
11 regulator observes next state s′r, its reward rr and updates its policy

πr;
12 end foreach
13 end foreach

Training on an neMG happens across multiple episodes. An episode begins
with the initialization of the environment’s states (line 4). At every period, the
regulator acts by adjusting the environment’s norm based on its percept, players
in the game act for m steps (combined), and the regulator receives an immediate
reward, update its policy, and the environment transitions to the next state (lines
5-10). In this case, period size (m) is the variable used to control the frequency
in which the regulator acts and is measured in terms of players’ steps. At every
step, a player acts based on its percepts, the state transitions, the player receives
an immediate reward from the environment, and updates its policy (lines 8-9).
The current player can be set in a round-robin, circular manner. Note that the
norm does not appear anywhere in the players’ loop because it is embedded
within the environment state.

7 Experiments

7.1 Environment

The experiments take place in the same environment as the experiment in our
previous work [8]; an environment that emulates the tragedy of the commons
game [16] and that closely resembles the environment used in Ghorbani et al. [14].
In it, players consume units of a common resource that replenishes as a function
of the amount of resources left in a previous step — i.e. if the resource level falls
to zero, the replenishment will also be zero. Players are rewarded proportional to
the amount of resources they consume, but if they all consume as much as they
can in each iteration, resources soon deplete, which characterizes an instance
of the collective action problem. The environment allows for the existence of
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norms and a regulator agent by including all elements introduced in Section
6. The regulator can set a consumption limit for other agents, as well as the
punishment for overconsumption. The environment is composed of two different
but related parts: the players’ environment and the regulator’s environment,
which are both described in the following.

Regulator’s environment: The regulator’s environment has the goal of exposing
macro-level information about the system to the regulator, and allowing it to
adapt the norms that will influence the behavior of players.

At every regulator’s iteration — which we here denote period —, the regula-
tor can observe how much resource is left (R), and a short-term and long-term
sustainability measurement (Ss and Sl respectively), given by S =

∑p
j=p−t

rpj

cj

defined for cj > 0 and t ≥ 0, with t being the number of periods considered
as short-term and long-term (respectively one and four for all simulations); rpj ,
the total amount of resources replenished in period j; cj , the total consumption
in period j; and p, the current period.

The initial values at the beginning of the simulation for these variables are
drawn from uniform distributions, i.e. R0 ∼ U(10000, 30000), Ss0 ∼ U(0.4, 0.6),
and Sl0 ∼ U(0.4, 0.6).

After observing the environment’s state, the regulator acts by adapting the
norm regulating the system. Here, we use the ADICO grammar cited in Section
4 as the normative framework to operationalize the norm synthesis process. The
A, D, and C dimensions remain fixed in this environment since a) the norm
applies to all players, b) the norm always defines a forbidden action, and c) the
norm is valid throughout the episode, no matter the conditions. Conversely, the
I and O dimensions can be adapted by the regulator; i.e., at every period, the
regulator may change the players’ consumption limit (l) and the fine applied
to those players who violate this condition (f(c, l, λ)) — by changing the fine
multiplier λ. The regulator adapts the norm by increasing or decreasing the
values of (l) — with changes limited to a value of 400 (∆lmax) and up until a
maximum value of cmax (lmax = cmax) — and (λ) — with changes limited to
a value of 0.5 (∆λmax) and up until a maximum value of 3 (λmax). The initial
values of both the consumption limit and the fine multiplier are drawn from
normal distributions in the first period of the simulation, i.e. l0 ∼ N (375, 93.75)
and λ0 ∼ N (1, 0.2). These values become available as part of the environment
state in the player’s environment

At the end of the period, the environment rewards the regulator based on
how well all players did during the iteration, i.e., how much of the resource all
agents consumed combined. The regulator’s environment relates to lines 5-12 in
Algorithm 1.

Players’ environment: After the regulator sets the norm for the period, players’
consume, one at a time, a quantity of resources up to a maximum of 1500 units.
The decision of how much to consume (ci) is taken after the player observes the
environment state available to it, which is composed of the amount of common
resource left (R), and the system’s norm, which includes the consumption limit
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(l) and the fine multiplier (λ) set by the regulator. Upon such decision, the
environment’s resource level is updated following the simple rule R := R − ci.
This process of observing the state of the environment, and choosing how much
to consume happens for a total of m steps, which controls the frequency in which
the regulator acts.

At every n steps — n being the number of players, 5 for this experiment — the
resource grows by a quantity given by the logistic function ∆R := rR(1− R

K ) —
akin to how some natural resources grow in the real world [14] —, with ∆R being
the amount to increase; r, the growth rate, set to 0.3; R, the current resource
quantity; and K, the environment’s carrying capacity — an upper bound for
resources —, set to 50000. The players’ environment execution relates to lines
7-10 in Algorithm 1.

An episode has two stop conditions; it finishes at the end of a period in case
resources are completely depleted or after a thousand steps.

Settings: We propose testing the model with changes along two axes: the harsh-
ness of the punishment applied to players that violate norms (by changing the
value of the fine multiplier) and the frequency at which the regulator acts (by
changing the period size). The test cases are distributed in two experiments,
each one serving the purpose of testing how this implementation of the frame-
work behaves given variations on each axis. Table 1 presents how the 8 proposed
test cases vary along said axes.

Experiment Name Value of fine multiplier (λ) Period size (m)

Experiment 1

default50 var 50
default100 var 100
default200 var 200
default500 var 500

Experiment 2

default100 var 100
fixedMultiplier0.5 0.5 100
fixedMultiplier1 1 100
fixedMultiplier2 2 100
fixedMultiplier3 3 100

Table 1. Summary of implementation test cases. The default100 case is used as a base
case in both experiments and thus.

The environment was built using both the OpenAI gym [5] and pettingzoo
[32] frameworks. Agents in this simulation were built with traditional RL archi-
tectures — SAC [15] for the regulator and A2C [23] for the players — using the
Stable Baselines 3 framework [29], and players were trained on a shared policy.
The learning rates for all agents were set to 0.00039. Each test case was run 10
times.



12 Cheang R. M. et al.

7.2 Experiment 1: testing the period size effect

This experiment provides us with a way of testing the effect that different period
sizes – the frequency at which the regulator acts – have on the overall perfor-
mance of the system. To this end, we use the default100 case as a benchmark
and test it against versions of the game with different period sizes (m). These
were set to 50 (default50 case), 200 (default200 case), and 500 (default500 case).

Results Figure 1 presents the average net and total consumption per episode
for each case in the experiment. The results show that the default50 case seems
to reach — on average — a higher consumption (around 600,000) than the three
other cases, before the four-thousandth episode, when it drops about 33%. We
conjecture this drop occurs due to some training instability common to RL such
as off-policy divergence [31, p. 260].

For the test cases in which the regulator’s actions are more infrequent, total
consumption did not stabilize at — in the default200 case — or even reach —
in the case of default500 — the same levels as the test cases in which the regu-
lator act more frequently (default50 and default100 ). This behavior is expected
since this metric is highly dependent on the regulator’s ability to set the right
consumption limit, and its learning is dependent on the frequency in which it
acts. Also, player’s learning could have been harmed in these cases, since players
spend more time acting on states with depleted resources, where their actions
have no effect on their rewards. A final reason that could explain the lower per-
formance of cases with larger period sizes is that in these systems the regulator
would have less time to react and thus prevent it from collapsing.

7.3 Experiment 2: testing the fine multiplier effect

In this experiment we test the effect harsher punishment has on the system’s
performance. This is accomplished by fixing the fine multiplier at different levels
across four different test cases (λ = 0.5, λ = 1, λ = 2, λ = 3) and leaving only
the task of setting the consumption limit to the regulator. Since fines are just
a proxy metric for negative rewards in our environment, this experiment has
the intent of testing how these mixed-motive systems behave for different scales
of punishment and how these changes may affect the agents’ learning path. We
also compare these cases against the default100 case, to check if there are any
noticeable advantages in allowing this extra flexibility to the regulator.

Results: Figure 3 presents the average total and net consumption per episode
for each of the five test cases in experiment 3 (default100, fixedMultiplier0.5,
fixedMultiplier1, fixedMultiplier2, and fixedMultiplier3 ). We notice a tendency
for convergence at a higher consumption level for the two cases with greatest
fine multipliers (fixedMultiplier2 and fixedMultiplier3 ) when compared to the two
cases with the smallest fine multipliers (fixedMultiplier0.5 and fixedMultiplier1 ).
This effect could be due to the strength of the signal being sent to the agents
in the form of fines. The smaller the fine multiplier, the lesser is the punishment
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Fig. 1. The average total and net consumption per episode for all cases in experiment
2 (default50, default100, default200, and default500 ). The shaded area in each graph
covers the area of one standard deviation above and one standard deviation below the
mean for each episode.
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Fig. 2. Resources level at a later episode when m = 50. The regulator manages to keep
resources near the optimal level (25000), represented by the dotted red line.

received for violating the norm and weaker is the players’ learning signal. The
stronger signal could be doing a better job in encouraging players to consume
below the limit, which is good for them in the long run. Another finding from
this experiment, is that there does not seem to exist a noticeable gain by allowing
the regulator set the fine multiplier.

Discussion: The first experiment shows that the frequency in which the regulator
acts in the system proved to be a sensible variable. Increasing such frequency
grants the regulator greater control by allowing it a bigger margin for it to
correct the system’s path once the system starts to behave undesirably. This
could be especially useful in dynamic systems, where negative outcomes might
scale exponentially.

The second experiment gives us a hint to how the punishment variable —
the Or else variable from the ADICO framework such as λ — impact learning
in and the overall performance of a mixed-motive neMG. Greater punishment
seems to grant more stability during training and also positively impact system’s
performance. That being said, we do not know the extent to which this pattern
is valid, more experiments should be conducted to test if it holds for even greater
values of λ.

8 Conclusions

Multiagent systems are part of a trend towards greater and widespread com-
putational power [35] that harnesses the potential of autonomous, goal-oriented
agents to solve ever so complex problems. This is reminiscent of how humans
solve problems in societies. We coordinate, cooperate, and negotiate with one
another in order to settle disputes, reach agreements, and move forward as col-
lective.

Still we have come to agree that letting everyone freely pursue their goals
through any means deemed necessary may take us quickly down a dangerous
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Fig. 3. The average total and net consumption per episode for all cases in experiment 3
(default100, fixedMultiplier0.5, fixedMultiplier1, fixedMultiplier2, and fixedMultiplier3 ).
The shaded area in each graph covers the area of one standard deviation above and
one standard deviation below the mean for each episode.
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road. In a system where incentives can point to many different directions, all
sorts of emergent exploits may lead to negative externalities. For instance, two
people may agree on a deal beneficial to them both but that goes against the
interests of one or more third parties.

In many of these cases we resort to central regulation of some shape or
form. If many parallels can be drawn between multiagent systems and real-world
communities, why shouldn’t we exploit this apparatus that has been employed
for centuries in the real-world, and is very present in our everyday lives, to solve
problems in communities of artificial agents? This work is part of an effort to
try and explore such solutions in MARL environments.
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