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Abstract. Understanding the conditions under which social norms or
conventions reach tipping points is critical for modeling large-scale be-
havioral change. A tipping point is reached when a committed minority
influences the rest of the population to switch from an existing norm.
In this paper, we explore how network topology, influencer mobility, in-
teractivity, and adaptive learning affect the acceleration and emergence
of tipping points in agent-based coordination games. We investigate two
network topologies (grids and small worlds), neighborhood interactivity,
varied mobility rates of influencer nodes, and agent memory capacity.
We use extensive simulations to identify favorable conditions as well as
the size and distribution of influencer groups needed for norm change.
We analyze the norm change process to show the interplay between net-
work structure and influencer mobility on the rate of norm change in
the tipping process. Our findings contribute to a deeper understanding
of norm change in multiagent systems, offering insights for the design of
more effective social interventions and mechanisms of norm enforcement.

Keywords: Tipping points · Norm change · Network topology · Mobility
· Influencers.

1 Introduction

Social norms and conventions play a crucial role in shaping collective human
behavior. Understanding how these norms emerge, spread, and undergo change
is essential for various fields, including sociology, economics, and artificial intel-
ligence [2, 14, 22, 26]. In particular, sudden and significant shifts in established
behavioral norms, known as tipping points, where a previous minority behavior
is adopted by the majority in the population, has received increasing attention
because of the disruptive forces they are often associated with [1, 6, 12, 13, 21].
Of particular interest is the size of the minority group of like-minded, stubborn
influencers needed to effect a change in the established convention followed by
the population. The success of such minority groups in effecting norm change,
i.e., the presence of tipping points, is consistent with the theory of critical mass
discussed in evolutionary game theory literature [4–6, 17, 26]. In the context of
multi-agent systems (MAS), the study of norm adoption and tipping points has
garnered significant attention, as it provides insight into collective behaviors and
how they can be influenced or accelerated under various conditions [3, 16, 18, 22].
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In this paper, we explore the impact of several factors on the emergence
and acceleration of tipping points in social norms using agent-based simula-
tions. Specifically, we examine how different network topologies (such as lat-
tice and small-world [24] networks), mobility patterns (stationary vs. migratory
agents [7]), interaction frameworks (Moore vs. von Neumann neighborhoods on
a grid [27], or small-world networks), and memory capacities affect the rate and
likelihood of tipping points. Our approach introduces systematic variations in
these dimensions to better understand how specific configurations can either ac-
celerate or delay the critical mass required for tipping points involving a change
of established norms.

While much of the previous work on tipping points in social norms has fo-
cused on static networks or stateless agents [15, 6], we extend this research by
allowing for the dynamic, localized mobility of influencer agents and the capac-
ity to remember previous interactions. We incorporate this memory into agent
decision-making, where agents base their norm adoption not only on immediate
observations but also on a history of past interactions [6]. This adds complexity
and realism to the model, providing a richer understanding of the conditions
that lead to tipping points.

Our contributions are twofold:

– We develop a simulation framework to perform extensive experimentation
with a range of influential factors, including network topology, mobility, and
memory history.

– We provide empirical results that show how varying these parameters can
accelerate tipping points, offering new strategies for inducing rapid norm
change in MAS.

This work builds upon existing literature on norm emergence, tipping points,
and network science, but it moves beyond prior approaches by integrating dy-
namic mobility, memory-based decision-making, and multiple norm options into
a unified framework.

The rest of this paper is organized as follows: Section 2 reviews related work,
Section 3 details our model, Sections 4–6 present results, discussion, and conclu-
sions, and Section 7 outlines future directions.

2 Related Works

The distinction between conventions and norms is not always clear. Typically,
norms are viewed as having more regulation around them with punishment for
a lack of adherence to a norm. Additionally, there are several classes of norms,
such as legal, moral, and social [20]. In this paper, the terms convention and
social norm may be viewed interchangeably, as we are more concerned with the
emergence and prevalence of a minority state over a majority one. In fact, our
findings can be generalized further to apply to any phenomenon which can spread
throughout a network via localized movement, such as opinions, ideologies, pop-
ular trends, preferences, diseases, cyberattacks, etc.
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2.1 Foundational Theories of Tipping Points & Norm Adoption

Our work is heavily influenced by the work of Centola et al. [6] who presented
results, both from empirical study with human subjects and from simulation-
based experiments, to validate formal predictions about the "critical mass" or
proportion of minority influencers needed to effect a change in established norms.
Centola et al. found that in contrast to no significant effect of varying popula-
tion size, varying memory size, i.e., the number of recent interactions influenc-
ing agent decisions, have a significant effect on tipping point. They experimented
with 10 independent groups where members of each group were randomly paired
to select a name for a picture. Choosing the same name gave them higher re-
wards. Once a convention was established in each group, a minority of 10–30%
individuals, using a different naming convention for pictures, was introduced.
Data was collected over successive interactions to see if the naming conventions
adopted by the population changed to that used by the introduced minority
groups.

Under explicit incentives that reward social coordination among peers, the
authors observed a tipping-point threshold percentage of influencers, in the mid-
20s, is needed to change the established social convention to a newly introduced
convention. This contrasts with prior theoretical models which hypothesized crit-
ical mass of as low as 10% to as high as 30% of the population size. Whereas
Centola et al. examined norm shifts within isolated random pairings, our study
extends this by placing agents in structured network topologies, allowing us to
explore the spatial effects of minority influence in a more realistic setting.

Granovetter’s "Threshold Models of Collective Behavior" provided an influ-
ential framework for understanding how individual decision-making, which is
contingent on social thresholds, combines to create outcomes [15]. Granovetter’s
model explains why small initial shifts in individual behavior can eventually lead
to large-scale social changes, especially when a critical mass is reached. His work
offers an essential theoretical lens for studying tipping points in social networks,
complementing Centola’s empirical findings.

While Granovetter’s model primarily focused on binary choices, later re-
search by Young explored how social learning influences the establishment of
conventions, emphasizing that small initial groups of adopters can play a dis-
proportionately large role in norm-setting under the right conditions [26]. Young
also emphasized the significance of coordination games in social learning, where
repeated interactions lead to the emergence of stable outcomes. This line of
work aligns closely with Centola’s focus on clustered-lattice networks, where
local reinforcement among agents can establish enduring behavioral patterns.
Both Centola and Young’s findings underscore the idea that tipping points are
not solely a function of network size or randomness but depend critically on how
agents interact and learn from one another over time.

Researchers, like Gelfand et al., have also made extensive work of surveying
the tipping-point literature and examining it for consensus opinions as well as
novel findings [14]. Such work is imperative given the ease of exploration in social
network dynamics in the modern day.
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2.2 Role of Network Topology in Norm Change

Centola showed that the topology of networks influences how social norms spread,
especially in the case of complex contagions, where adoption requires reinforce-
ment from multiple neighbors [4]. Centola’s work demonstrated that clustered-
lattice networks are more conducive to norm adoption compared to random
networks because they facilitate repeated interactions among individuals with
similar thresholds. These findings highlight the crucial role that network struc-
ture plays in shaping the adoption process.

While Centola has looked at norm dynamics in a handful of topological set-
tings where interactions are localized, each agent only sees one of its neighbors at
a time during the interaction [5]. In a way, our paper seeks to combine the topo-
logical constraints and local interactions found in [5] with the memory capacity
and committed minority of [6].

More recent research has focused on the role of minority influence in tipping
dynamics. Baccino and Villata investigate how small, committed groups can
influence the majority even when their views are initially unpopular [3]. Their
findings suggest that the placement of such groups in network structures can
greatly amplify their influence, particularly when they demonstrate high levels
of commitment or “loudness.” This research highlights an important aspect of
norm adoption: the qualitative characteristics of influencers, rather than their
sheer number, can be decisive in tipping points. This echoes earlier insights
from Centola, who argued that network structure, when combined with strong
behavioral reinforcement, plays a pivotal role in norm propagation. They suggest
this committed minority thrives especially in small-world or scale-free networks.

Other studies have investigated the effects of topology and memory, such as
Villatoro et al. [23]. However, these researchers initialized their networks with
unbiased agents, each with a myriad of conventions to choose from. They do not
study the necessary parameters for flipping a majority class by introducing a
minority of stubborn influencers.

2.3 Influencer Characteristics & Mobility

The mobility of the influencer agents in our simulations is similar to that of a
simple random walk [19]. Though, there is a probability that the influencers stay
put at each time step, and they do not swap positions with other influencers, so
these mathematical models based on random walks are not directly applicable
to our experiments.

Mobility is a crucial parameter for conventions to spread in a multi-agent
network. Many researchers will utilize a topological framework, but keep all
agent positions fixed from the start [16]. While we do analyze the impact of
complete immobility of all agents in the network, it is the presence of localized
movement which brings about the most interesting effects on norm emergence.

Choi et al. observe different network effects resulting from the diffusion of
innovations in a market setting [9]. However, the initial "enthusiasts" in the
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network are immobile, and there is no concept of memory introduced in their
simulations.

Crawford et al. investigated the repulsion effect seen so often in real-world
interactions [10]. The researchers proposed two models, one for repulsion by
social judgment, and another for repulsion of by categorization. They also theo-
rized about the formation of extremist groups and their implications under these
models.

De et al. utilize an evolutionary model with a prisoner’s dilemma payoff
matrix at each pairwise interaction in their networks. They even introduce the
idea of mobility [11]. However, the rate of mobility is kept relatively low (below
8%) and works by moving the agent to a randomly selected open node of the
network, which exists due to the birth and death rates of their model. Unlike
our study, mobility is not localized in their model.

These studies underscore the combined role of decision-making, structure,
and influencer strategies in shaping tipping points. The current research builds on
this foundation by investigating how different network topologies, agent mobility,
and interaction frameworks can alter tipping dynamics, with a specific focus on
the role of influencers in driving collective behavior toward critical thresholds.

3 Methodology

3.1 Topological Generation

These experiments tested two different topologies: square lattices and small-
world networks. Chosen for their relevance to social systems, lattices can rep-
resent dense crowds, while small worlds introduce random long-range connec-
tions [24]. This localization will be important for the movement of our influencer
agents, which we will discuss later.

Lattice. This topology featured N = n2 agents that were placed in an n × n
grid. The connectivity of each node was determined by two Boolean parameters:
torus and Moore. The former indicated whether the lattice should be treated
like a torus (i.e. the left and right edges of the network were connected as well
as the top and bottom). The latter specified whether each agent was surrounded
by a von Neumann neighborhood (4 adjacencies) or a Moore neighborhood (8
adjacencies).

Small World. These networks consisted of N agents connected within a small-
world graph obtained using the Watts–Strogatz model. They were built by spec-
ifying two parameters: k (the number of nearest neighbors to which each node
was initially connected in a ring topology) and p (the probability of rewiring
an edge). As the network effects from changing p are well documented [24], we
set p = .1 for all simulations. This ensures our small worlds are never com-
pletely random (p = 1) nor a regular ring lattice (p = 0), and instead something
realistically in between.
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3.2 Agent Types

The agents in these simulations came in two varieties: ordinary and influencer.
While an agent’s type stayed the same throughout a simulation, its internal state
value, representing its current norm, could change.

Ordinary. Most agents at the beginning of each simulation were ordinary. They
represented the dominant majority all following the same norm, but could be
convinced to switch. To represent the dominant norm, their initial state was set
to 0. These agents did not move on their own, but they did interact with their
direct neighbors at each time step. The result of this interaction determined the
state they assumed for that time step. To reach that result, the agent observed
the states of its current neighbors along with the previous M steps of neighbor
states in its memory. The agent would then take on the majority norm or remain
unchanged if there was a tie.

Influencer. A fraction f of the agents, known as influencers, were given an al-
ternative norm, represented as state 1. The members of this committed minority
never changed their norm, but they did move throughout the network in hopes of
converting other agents. At each time step, an influencer had a chance—denoted
by the mobility rate m—to swap places with one of its ordinary neighbors, cho-
sen at random. This swap movement retains the network structure, ensures each
node represents a single agent at all times, and keeps mobility localized, allowing
for the gradual diffusion of conventions.

3.3 Simulation

After generating the topology, the influencers were placed evenly throughout the
network according to a Halton sequence with Owen scrambling for sufficiently
different placements between simulations [8]. For lattices, a two-dimensional sam-
ple was calculated, then each coordinate was rounded to the nearest integer and
mapped to the corresponding node on the grid in which to place an influencer.
For small worlds, a one-dimensional sample was chosen and directly mapped to
the node IDs in the network.

Full simulations using a both network topologies are displayed in Figure 1.
Red dots represent the influencers, blue dots are ordinary agents that still adhere
to the initial norm of the majority, and orange dots are those that have switched
to the minority norm.

At each time step, influencers moved according to their mobility rate m,
and ordinary agents interacted with their neighborhoods. The minority norm’s
adoption rate of the entire population was then recorded, and the cycle would
repeat. If the alternative norm (state 1) ever reached total ubiquity, the simula-
tion would cease. Figure 2 shows the adoption rates over time of the simulations
in Figure 1. It is important to note that the adoption rate is not increasing
monotonically, and there are several times when the influencers’ progress is lost
due to their movements.
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(a) Step 0 (b) Step 500 (c) Step 1000

(d) Step 0 (e) Step 500 (f) Step 1000

Fig. 1: Simulations using lattice (a–c) and small-world (d–f) networks. Blue nodes
are ordinary agents in state 0, orange nodes are ordinary agents who have been
influenced to take on state 1, and red nodes are influencers.

(a) Lattice. (b) Small world.

Fig. 2: Adoption rates over time for the simulations found in Figure 1.
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3.4 Tipping Point Estimation

In order to determine an estimate for the true tipping point f∗ of a single
configuration, 50 evenly spaced f values were used to run 50 simulations. The
final adoption rate A of the minority norm was recorded after each simulation.
The 50 (f , A) samples would be used to fit a curve, where the midpoint (f∗, .5) of
that curve would contain the estimate for the tipping point of the configuration.

The first and simplest curve that appeared to fit the data was a logistic curve,
given by Equation 1.

Aord(f) =
1

1 + e−a(f−b)
(1)

Here, b is the f value at the curve’s midpoint, while a describes the steepness
of the curve near its midpoint. This curve fits the behavior of our data as it is
bounded between 0 and 1, with a steep but smooth increase in the middle.

However, this curve only describes the final adoption rate of the ordinary
agents given f , since it stays very close to 0 at low values of f , hence the syntax
Aord(f). The overall curve would combine this effect with the final adoption
rate of the influencers given by Ainf (f). This function was always 1 for our
simulations, as the influencers never changed their norm. Thus, we arrive at
Equation 2, which describes the final adoption rate of the whole network, and is
the objective function for our curve-fitting problem.

A(f) = fAinf (f) + (1− f)Aord(f) = f +
1− f

1 + e−a(x−b)
(2)

This is the statistically superior model. Over 65% of the data exhibited a lower
sum of squared residuals (SSR) from the logistic model, improving both the
mean and median SSR. This is because it encapsulates the linear trend in A at
low values of f , as the influencers grow in size while not realizing any change in
their ordinary neighbors. However, once f is large enough to flip ordinary agents
for good, then the logistic behavior begins. It is important to note that a and b
are still the only parameters for this function. The biggest difference is that the
midpoint no longer occurs at b.

Now that we had our model function, we used non-linear least squares to fit
the simulation results of each configuration to Equation 2. This provided us with
the optimized curve parameters and their uncertainties. We then utilized root-
finding algorithms on the resulting curve to determine f∗. Figure 3 demonstrates
all of these results for a single configuration.

Table 1 describes all of the variables present in the simulations and provides
any default values they may take when not explicitly varied.

4 Results

4.1 Sensitivity Analysis

We ran an extensive sensitivity analysis over five principal configuration vari-
ables: influencer mobility rate (m), agent memory (M), the number of agents
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Fig. 3: An example A(f) curve fitted to simulation data. The title contains the
values of the configuration parameters, which were [N , topology, torus, Moore,
k, M , dist, m, steps].

Table 1: Variable descriptions, possible values, and default values.
Variable Description Possible Values Default

A Final adoption rate [0, 1] -
dist Initial influencer distribution {even} even
f Fraction of influencers [0, 1] -
f∗ Tipping point [0, 1] -
k Small world: Average node degree N 4
M Agent memory N 5
m Influencer mobility rate [0, 1] .05

Moore Lattice: Moore neighborhoods? {true, false} false
N Number of agents/network nodes N 100
p Small world: Edge-rewiring probability [0, 1] .1

steps Maximum number of timesteps N 200
topology Lattice or small-world network {lattice, small-world} -
torus Lattice: Torus? {true, false} false
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in the network (N), the maximum number of simulation steps (steps), and the
network structure (topology). This involved simulating 50 different f values on
432 different configurations, resulting in 21,600 total (f , A) data points. Each
configuration was fitted to a model curve from which an estimate of f∗ could
be extracted. It is important to note that the lattice and small-world networks
were built using their default values from Table 1.

Figure 4 shows several trends across tipping point heatmaps. First, it appears
that f∗ decreases significantly as mobility rate first increases, then it flattens out
for large values of m. This effect is the most drastic of all the trends found from
this analysis. Second, the tipping point decreases with increasing steps. Third,
increasing the agents’ memory inflates the value of f∗. Lastly, the default lattice
network consistently has a slightly higher tipping point than its small-world
counterpart. Using Spearman’s rank correlation, we can confirm that mobility
rate (ρ = −.69), maximum timesteps (ρ = −.53), and memory (ρ = .15) correlate
the most with f∗, while the network topology (ρ = −.08) and the number of
agents (|ρ| < .01) appear uncorrelated.

Since the first three of these trends are the most significant, we investigate
their combined effects further in Figure 5. In most scenarios, the tipping point
seems to decay exponentially with increasing influencer mobility. The value of f∗

also clearly decreases with more steps. However, at large values of m, these two
behaviors change according to M . With no memory at all, f∗ seems to decrease
monotonically. However, as the agents’ memory capacity increases, so too does
the tipping point. This effect is so great that, with a mobility rate of 50%, a
200-step, no-memory simulation exhibits roughly the same f∗ as one with 5000
steps and memory capacity of 10.

4.2 Memory

We ran a number of supplementary simulations to determine the true relation-
ship between memory and the tipping point. These extra samples came from
configurations which fixed three additional variables to their default values in
Table 1: m, N , and steps. After recording the data and fitting the curves to
several different linear, logarithmic, and exponential functions, the clear winner
was a shifted logarithmic function given by Equation 3, obtaining an R2 value
of about .97.

f∗(M) = a ln(M − b) (3)

It should be noted that, while Though the function lacks a horizontal asymptote,
f∗ logically cannot exceed .5. However, M would have to be impractically large
for this to occur with the typical optimized parameters. Figure 6 displays the
supplemental data along with this fitted curve.

4.3 Steps

Similar to above, we simulated some more data to further characterize the effects
of steps on f∗. In doing so, the configurations fixed m, N , and memory to their
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Fig. 4: Pairwise tipping point heatmaps over the following configuration param-
eters: m, N , steps, M , and topology. All cells represent averaged f∗ values. The
shade of a cell corresponds to the relative size of f∗ within its own subplot,
independent of the values in other subplots.
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Fig. 5: Trends in f∗ vs. mobility rate, memory, and maximum timesteps.

Fig. 6: Tipping point vs. memory, featuring supplementary f∗ samples after fix-
ing m, N , and steps to their default values.
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defaults. This time, a reciprocal function was the best fit with an R2 value of
about .98. Equation 4 gives the parameterized form.

f∗(steps) =
a

stepsb
(4)

This function features a horizontal asymptote at f∗ = 0, which implies that
any configuration could drive its tipping point down near zero given enough
timesteps. Figure 7 displays the supplemental data along with this fitted curve.

Fig. 7: Tipping point vs. steps, featuring supplementary f∗ samples after fixing
m, N , and M to their default values.

4.4 Topology

Table 2 shows the results for yet another subset of our simulations. In it, we
varied the topological parameters of both network types, along with mobility
rate, due to its significant interactions with f∗. For a given value of m, the
number of network connections increases down the table. We can see that, given
a positive mobility rate, the tipping point is directly related to the number of
network connections in both topologies.

Toral lattices ensure that edge cells have the same number of connections as
interior cells. Moore neighborhoods are twice as large as von Neumann neighbor-
hoods. Given n = 15, a non-toral grid with von Neumann neighborhoods would
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Table 2: The effects of topological changes and mobility rate in lattices (left)
and small worlds (right), holding all other parameters constant.

m torus Moore f∗ 95% CI
0 .354 [.322, .381]
0 ✓ .399 [.363, .428]
0 ✓ .317 [.293, .335]
0 ✓ ✓ .338 [.307, .358]

.10 .121 [.113, .127]

.10 ✓ .134 [.129, .139]

.10 ✓ .152 [.145, .158]

.10 ✓ ✓ .178 [.162, .189]

.25 .110 [.105, .116]

.25 ✓ .127 [.124, .129]

.25 ✓ .151 [.138, .162]

.25 ✓ ✓ .194 [.180, .203]

m k f∗ 95% CI
0 2 .379 [.364, .394]
0 4 .280 [.268, .291]
0 6 .347 [.333, .350]
0 8 .319 [.307, .331]

.10 2 .121 [.114, .129]

.10 4 .122 [.117, .127]

.10 6 .144 [.141, .147]

.10 8 .164 [.161, .166]

.25 2 .084 [.079, .089]

.25 4 .098 [.093, .102]

.25 6 .127 [.125, .130]

.25 8 .168 [.167, .168]

only have 2n(n − 1) = 420 edges, whereas a torus with Moore neighborhoods
would have over double with 4n2 = 900. Moore neighborhoods asymptotically
double the number of edges in a lattice as n grows. This increases the number of
influencers needed around an ordinary agent to convert its norm. Additionally,
non-toruses require fewer influencers to convert those near the edge. Persuaded
agents on the edge form a much more stable block than a coalition in the center
of the grid.

For small worlds, k directly controls the number of adjacencies in the net-
work. This network type behaves similarly to lattices in that an increase in
k—and thus the total number of connections—seems to increase f∗ when in-
fluencers are mobile. The pattern is less clear for stationary influencers in both
topologies, where their immobility results in staggeringly high tipping points for
any configuration.

5 Discussion

The vast majority of the tipping points we observed are significantly and consis-
tently lower than those obtained from theoretical and empirical studies [6, 26].
The key difference between these two experiments is the interaction mechanism
employed. Instead of randomly pairing individuals at each time step, the agents
interact with only their neighbors, who are determined by the topology of their
network or community. Thus, individuals of a committed minority can collab-
orate more effectively to influence the others, even while their movements are
random and uncoordinated.

The influencers’ frequency of movement is by far the most critical factor
in lowering the tipping point. If there is no mobility, the "critical mass" that
committed minority must exceed is 25% of the total population to have a chance
of succeeding. Even the slightest chance of movement causes this threshold to
plummet.
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The time horizon of the overall interaction is also quite an important factor.
Our model suggests that any configuration’s norm can switch given enough time
and given the bare minimum number of influencers to flip the first ordinary agent.
This occurs despite the fact that the adoption rate over time is not guaranteed
to increase monotonically.

In our results, tipping points and memory capacity appear to be logarithmi-
cally correlated. This observation agrees with that of Centola et al., who pre-
sented a logarithmic-like relationship between these variables [6]. This confirms
that increasing memory reduces susceptibility to norm shifts but at a diminishing
rate. Additionally, even though our model did not include an explicit asymptote
at f∗ = .5, agents would need an unfeasibly large memory capacity (M ≫ 50)
to approach this value.

The number of edges in the network is also a major contributor to the reduced
tipping points. Generally speaking, mobile influencers prefer fewer interactions
per individual, since fewer influencers are needed to successfully convert. Fur-
thermore, topologies with edges, like the non-toral lattices, can greatly assist
influencers. Not only do they reduce the total number of interactions in the grid,
they offer more stability for communities of influenced agents than those posi-
tioned internally. These phenomena can even be seen in the example simulation
in Figure 1.

However, we did not observe drastic threshold differences between lattices
and small-world networks. The tipping points were quite comparable given a
similar number of interactions per agent in the network. We also noted that the
number of agents in the network had little to no effect on f∗. Thus, the 100-agent
networks we simulated were just as representative as one with millions of agents.

6 Conclusion

Our findings highlight that mobility plays the dominant role in reducing the
tipping point threshold, far outweighing the effects of network topology, agent
memory, or interaction radius. Even a modest mobility rate dramatically lowers
f∗ by an order of magnitude.

Influencing agents significantly prefer communities where the memory ca-
pacities of their neighbors are low. Past experiences can significantly delay the
conversion process by requiring influencers to remain in one place for longer,
something which is not guaranteed with random movements.

Finally, small-world and lattice topologies can lend themselves to significantly
decreased tipping points for a committed minority to convert the whole popula-
tion. If the average number of connections per agent is low, mobile influencers
can easily succeed.

The fact that these tipping points can be so drastically diminished without
any planning or coordination between the influencers is quite exceptional. If the
agents learn to strategize their collective movements, or simply follow a greedy
heuristic of their own, these thresholds could be brought down to only a handful
of influencers per hundreds or even thousands of ordinary counterparts.
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In addition to social norms and conventions, the model can apply to more
general domains such as opinion dynamics, ideology spread, and belief change.
Political figures, elected officials, and civic leaders who have committed followers
can take advantage of their community topology to influence public behavior.
Additionally, these ideas can be used to model the spread and containment
of transmittable diseases, similar to susceptible-infectious-recovered (SIR) mod-
els [25].

7 Future Work

We envisage a number of fruitful dimensions to investigate to better understand
and characterize what factors are influential and to what extent in facilitating or
hindering tipping points. The following are some interesting and likely fruitful
research directions that we envisage pursuing in the near future:

– Individuals in real-life are likely to have some vested interests and inertia that
resists change. In particular, an individual is less likely to switch conventions
immediately after changing to a new one. It would be interesting to see if we
have some entrenched holdout of the existing conventions that can influence
the population back after a new norm is reached among the non-entrenched
population. The relative sizes of the tipping points of intitial change and the
reversal process may show hysteresis patterns.

– Stubborn adopters of minority norms can often face punishment for their
noncompliant behavior. Thus, it could add further realism to model the
effects that such punishments have on the tipping abilities of committed
influencers.

– The mobility of influencer agents in the current implementation is random.
We can evaluate more deliberate and intentional movements by the influ-
encers, including (a) coordinating movements with other influencers, (b)
adapt movement rate to interaction experience with current neighbors, (c)
use movement trajectory memory to decide where to move next, etc.

– Placement of initial influencers can impact the rate and likelihood of adop-
tion of the new convention. Strategic injection of influencers into the popu-
lation topology can be evaluated.

– Experimenting with additional network structures (scale-free, hub-and-spoke,
etc.) could be instructive.

– It could be quite beneficial to predict tipping points before they happen
by monitoring adoption rates over time. Interventions such as increasing
influencer mobility or seeding additional influencers could then be used as
steering mechanisms.
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