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Abstract. A major concern of cooperative multi-agent reinforcement
learning (MARL) in real-world applications is the ability to coordi-
nate transparently with new teammates for a common goal. Two prob-
lem formulations, Zero-Shot Coordination (ZSC) and Ad-Hoc Teamplay
(AHT) have garnered particular interest. We focus on AHT because it
includes dynamic agents with no prior knowledge, while ZSC assumes
a static policy based on shared knowledge of the environment dynam-
ics. Communication is a common factor in both settings, but standard
practice is to share grounded information through pre-defined commu-
nication channels or to learn arbitrary communication protocols that
implicitly suggest actions or share information. We argue that explicit
command-based communication allows for a higher theoretical team per-
formance ceiling than information sharing or best response strategies,
and that teacher-listener relationships can be learned in an ad-hoc set-
ting for any pre-trained agent that can estimating the current value of
an environment state. We show how to learn explicit commands in ad-
hoc timescales through our algorithm, Multi-Armed Two-way Command
Heuristic (MATCH). Finally, we provide a minimally complex environ-
ment to measure and isolate the effects of cooperative equilibrium selec-
tion, generalization to teammate skill variance. We leverage this environ-
ment to provide a principled approach for evaluating future coordination
algorithms in terms of their ability to address cooperation challenges.

Keywords: Ad-Hoc Coordination · Multi-Armed Bandit · Reinforce-
ment Learning · Communication

1 Introduction

In many real-world use cases such as volunteer search and rescue, military oper-
ations, autonomous vehicles, and online video games, proposed artificial agents
must work with other agents that they have not seen before, and that they have
no explicit control over [33]. A person might offer or follow advice, but in ad-
hoc environments with no pre-determined reward structure, the shot-caller is a
dynamic group decision which must be made with very limited information. On-
going challenges for producing effective artificial agents in ad-hoc environments,



2 F. Timothy et al.

including robustness to novel conditions [18], trustworthiness for humans [14, 15,
12], and the ability to identify [25] and operate on complementary strategies [2,
32] with surrounding entities that share similar goals. For the purposes of this
paper, we focus on high-quality joint-strategy selection and execution in envi-
ronments where multiple optimal joint strategies exist, and other agents follow
unknown strategies at unknown skill levels. In such an environment, there is an
equilibrium selection problem [35, 29] over which optimal joint strategy to play,
and there is also a consideration outside of equilibrium selection which we refer
to as “the skill gap problem”. The skill gap problem occurs when a rational agent
must choose a best response to unskilled teammates that might be attempting
to play complementary joint strategies, but that are incapable of executing them
faithfully. No matter what the rational agent does unilaterally, the resulting team
strategy may not be one of the optimal joint strategies of the environment, so
we want to do better than best-response.

In order to isolate the effects of coordination and the skill gap, we introduce
a new environment “Lever-NvNTTT” where two teams of ‘N’ agents play tic tac
toe and all agents on a team must choose the same square to place a piece, or
their turn is skipped. Lever-NvNTTT can be installed from pip as fasttttsand-
box. Lever-NvNTTT is designed to be minimally complex and computationally
inexpensive while unambiguously separating different aspects of the ad-hoc co-
ordination challenge.

2 Preliminaries, Coordination in Multi-Agent RL

Before describing our methodology, there are two formalisms of the coordination
problem that are of great interest to this paper. Zero Shot Coordination (ZSC)
first introduced in [17] describes a problem where agents share common knowl-
edge about the environment dynamics in which they operate, and a common
goal, but they are not allowed to change their strategy once execution has be-
gun. Recent works on ZSC [16, 9, 43, 45] focus on creating agents that abandon
the arbitrary conventions learned through self-play in favor of grounded policies
that generalize to other, rational, ZSC agents. These agents may share grounded
information as in the game Hanabi [3]. Ad-hoc teamplay [33, 23, 39] describes the
problem differently, as shared competence is not assumed of other agents, but
changes in policy are allowed during execution. For the duration of this paper,
we adopt the paradigm of N-agent Ad-hoc teamplay where agents are allowed
to communicate and update their own policy at runtime, but they are not al-
lowed to force control over another agent. Explicit commands in this paper are
defined as an action or a sequence of actions that one agent sends to another
agent which can be followed or ignored at the discretion of the listening agent.
Future work will include commands at a higher level of abstraction as humans
commonly communicate at the sub-task level for a given problem. Existing meth-
ods of communication in ad-hoc teamplay include predefined [24, 3], arbitrarily
learned [11, 44] or even implicit communication such as action signaling [26, 1].
The use of communication channels to influence another agent’s behavior does
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not count as forced control over the other agent, because the response is still
up to the listener. In the same way, we argue that optional explicit commands
do not violate the ad-hoc requirement about forced control, but they do provide
an opportunity for a transparent and grounded form of communication from an
explainability point of view.

Formally, our agents can operate in fully or partially observable decentralized
Markov Decision Process (Dec-POMDP) with communication [4, 46]. For par-
tially observable environments, an agent implementing our protocol, MATCH,
will need either an estimate of other agents’ observations from which to gen-
erate action recommendations, or a policy which generates actions for multiple
agents. For this paper, we use a fully observable environment as a best-case sce-
nario to align with similarly best-case dynamics for the competing paradigms
we present. The most general application of MATCH, a Dec-POMDP consists
of the 7-tuple {S, {Ui}, T,R, {Ωi}, O, γ} where S represents the set of all possi-
ble states of the environment, Ui represents the set of actions available to each
agent ai : i ∈ {1, ..., n} of n total agents, where U represents the joint-action. The
transition function T = S ×U → ∆S represents the probability of moving from
state s ∈ S to some new state s′ ∈ S given joint-action u = ⟨u1, u2, ..., un⟩ ∈ U.
The reward function Ri : S × U × S → Rn maps each state-action transition
to a reward for each agent. We use Gγ

t = rt + γrt+1 + γ2rt+2... to denote the
discounted sum of rewards to-go where γ is the discount factor. Ω = {Ωi} is the
set of observations for each agent generated by the state observation function
O : S × U → ∆Ω. For the environments in this paper, we assume full coop-
eration so that rewards are shared among agents R1 = R2 = ... = Rn. Under
the Dec-POMDP framework, each agent has a policy πi : Oi → ui which maps
that agent’s observation to either an action ui or a probability distribution over
possible actions Ui in the case of a stochastic policy. The communication in our
environments is assumed to be a cheap talk [8] setting where communications
are non-binding and free of any direct cost or payoff to agents. Messages take
place between each timestep of an environment.

Let Π be the set of all possible policies that an individual agent can follow
for an ad-hoc environment with PΠ as a probability distribution over Π. The
learning goal for typical Multi-Agent Reinforcement Learning (MARL) in a Dec-
POMDP is to find a set of policies that maximizes expected return.

π∗ = arg max
π∈Πn

E[Gγ
0 |π = ⟨π1, ..., πn⟩] (1)

Under the centralized training, decentralized execution framework (CTDE),
we have control over all πi ∈ π at training, so it is sufficient to find any π∗

(of which there may be multiple). The goal of ZSC and AHT, shown formally
in equation 2, can be summarized as learning a policy π̂∗ that maximizes team
performance when the policies followed by other agents are sampled from PΠ .

π̂∗ = arg max
π̂∈Π1

Eπi..n∼PΠ
[Gγ

0 |⟨π̂, π1, ..., πn−1⟩] (2)
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Because we can only control a subset of policies in AHT, equation (1) per-
formance acts as an upper bound to both ZSC and AHT.

3 Previous Work

Previous work on finding static policies that are robust to unseen teammates in-
cludes strategies to increase the state variety seen by an agent by random partner
augmentation [43], population training [38, 7] based on maximum strategy en-
tropy [45], elo matchmaking [21], or evolutionary diversity [42]. Other efforts
to generate models that generalize to all partners use grounded communication
[22, 16, 19, 41] to adapt to teammates that are capable of giving requests or com-
mands such as humans. Adaptive strategies include opponent modeling [25], role
assignment via coach/player dynamics [20], and lifelong learning through online
updates with novel partners [27]. A more comprehensive review of ad-hoc team-
play can be viewed here [23], but for the purpose of this paper, we focus on a
population best response and opponent modeling. For the longevity of these re-
sults, we look at the optimistic case where agents are identified perfectly and the
training population mimics the test-time population this way the current state
of the art in each paradigm should not effect the theoretical outcomes shown
here.

For population-based training we create some P̂Π̂ ≈ PΠ and then train π̂
based on the population. The optimistic case for this approach, which we call
Population Best Response (PBR), happens when P̂Π̂ = PΠ . For opponent mod-
eling, we try to identify ⟨π1, ..., πn−1⟩ in order to perform some Bayesian update
on P̂Π̂ so that π̂ can become a more specific best-response strategy. Opponent
modeling assumes that with a better estimate of who we are playing with, per-
formance will improve up to a limit when we have correctly identified other
agents with certainty for which we play the best response. We abbreviate this
optimistic case in the results as (OM). Lastly, communication, be it information
or arbitrary, can contain implicit commands when learned as a best response.
Communications produced by a best-response agent may inject data that manip-
ulates teammate behavior, causing the upper bound performance to reach that
of equation (1) with the maximum performance occurring when an agent is able
to identify its teammates and choose a communication policy that manipulates
them as positively as possible as in RIAL/DIAL [11]. Both implicit and explicit
communication have an optimistic case where the most capable agent is able
to successfully convince other agents to follow an optimal joint strategy π∗, so
the self-play results between two identical agents represent the optimistic case
for both communication paradigms. We present MATCH as a more transparent
alternative to implicit communication, which learns explicit commands within
125 time-steps, or 25 total messages sent with a command length of 5 steps. Ad-
ditionally, MATCH includes a mechanism for unskilled agents to stop sending
communication so that they don’t decrease the performance of skilled agents.
Finally, social learning [26] and various coach-player paradigms [20, 34] leverage
the behavior of potentially superior teammates or advisors, by observing their
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actions or following their suggestions, but these works operate on the order of
tens or hundreds of thousands of environment time-steps.

Our method of learning command-based communication most closely relates
to the simultaneous advisor-learner structure of [10] in which agents ask for ac-
tion suggestions from other agents based on the perceived importance (the value
difference between the best and worst move is high) and uncertainty (familiar-
ity with the current state is low). Advice generates more intentional training
data than random exploration because agents are more likely to find meaningful
trajectories. Our algorithm, described in section 4 operates based on observed
performance instead of importance or uncertainty. Commands are given to agents
that listen, and commands are followed from agents whose commands have led
to good outcomes in the past. MATCH relies on the normative belief that ad-hoc
agents prefer to follow advice from agents that have been helpful so far.

4 Methodology

4.1 Generating Policies Via Deep RL

In order to generate competent policies for our environments, we used Mun-
chausen Deep-Q Learning (M-DQN)[37] with a dueling Q architecture[40] and
Proximal Policy Optimization (PPO)[31] to generate deterministic and stochas-
tic policies respectively, due to their state-of-the-art performance and simple im-
plementation. The choice of policy generation is arbitrary as MATCH is policy
agnostic so long as a Q or Value function is maintained. The Q or Value estimate
is essential to MATCH’s listening component which decides whos commands to
follow. The hyperparameters and code are available at https://github.com/Timothy-
Flavin/Multi-Armed-Two-way-Command-Heuristic.

4.2 Temporal Difference and Advantage Estimation for Command
Quality

Two functions of interest to us for estimating the value of following a command
are V π,γ(st) = E[Gγ

t |π, st] and Qπ,γ(st, ut) = E[Gγ
t |π, st, ut] which estimate the

expected value of the rewards to-go from a current state st for policy π and for
the Q function, action ut. Let the advantage Aπ,γ(st, ut) be defined by equation 3
and let the single step temporal difference residual δV

π,γ

t be defined by equation
4 from [30] where Aπ,γ(st, ut) = E[δV π,γ

t ]. We also have the k-step advantage
defined by equation 5 and generalized advantage in equation 6 from [30] where
k and λ adjust the bias and variance of advantage estimates.

Aπ,γ(st, ut) := Qπ,γ(st, ut)− V π,γ(st) (3)

δV
π,γ

t := −V π,γ(st) + rt + V π,γ(st+1) (4)

Â
(k)
t :=

k−1∑
l=0

γlδV
π,γ

t (5)
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Â
GAE(γ,λ)
t :=

∞∑
l=0

(γλ)lδV
π,γ

t (6)

For ÂGAE(γ,λ)
t there are two special cases that we are interested in, λ = 0 which

reduces to the single-step TD errors with the least variance but the most bias,
and λ = 1 which reduces to the Monte Carlo Advantage Gγ

t − V π,γ
t which is

unbiased but also high variance for summing over all rt : r∞. We discuss in
section 4.4 that bias is of particular concern when evaluating the quality of
communications received from another agent, so a higher variance estimator
with low bias is recommended.

4.3 Multi-Armed Bandits of Interest to MATCH

Multi Armed Bandit (MAB) problems consist of a gambler choosing at each
round to play one of K slot machine arms, each defined by an unknown reward
distribution. The gambler wants to maximize cumulative earnings over some
time horizon T by selecting arms and observing their payoffs [5, 6, 13, 28]. While
there are many algorithms for solving MAB problems, we focus on Thompson
Sampling [36] because of its strong empirical performance, insensitivity to hy-
perparameters, and its ability to incorporate prior information as a Bayesian
method.

Listening MAB When listening to commands, agents can only take one action
at a time, so they can only follow one command at a time. The true expected
payoff for following a command is a real number drawn from an unknown distri-
bution (1) based on the joint policy of the team. In ad-hoc teamplay, policies are
non-stationary (2), so the command-reward distribution is also non-stationary.
An agent will only receive commands from a subset of its teammates (3), so some
“arms” of the bandit are inactive. These requirements culminate in the problem
definition of the listening MAB for MATCH as a non-stationary (2) Gaussian
(1) sleepy (3) bandit.

Speaking MAB An agent may instruct or ignore (1) any combination (2) of
teammates that it chooses. Consequently, it may update its estimated probability
of being followed for each of the agents it instructed (3). Finally, other agents may
change their own listening probability over time (4). These requirements define
the problem of MATCH’s speaking module as a non-stationary (4) Bernoulli (1)
combinatorial (2) semi-bandit (3).

Implementation We use an Inverse Gamma distribution as a prior for listener
arm variance with the sample means of previous arm pulls serving as our prior
means. We use Beta distributions as the priors for each speaker arm. Both the
Inverse Gamma and Beta distributions are parameterized by θ = {α, β}, which
monotonically increase over time as samples are collected, leading to a more
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confident estimate of rewards as time goes on. To handle non-stationarity, we
exponentially decay {α, β} towards some θ0 = {α0, β0} using θt+1 = γθt +
(1 − γ)θ0 with decay parameter γ ∈ [0, 1] to continually inject uncertainty into
our Thompson samplers. We also update the distribution means via exponential
decay with learning rate λ ∈ (0, 1) so that µt+1 = λrt + (1− λ)µt. In the case of
the Gaussian MAB, we also experimented with slowing the decay of β by setting
γ closer to 1 for any arms which were not sampled recently, so that the variance
drawn from the Inverse Gamma distribution increases for arms which are pulled
less often. This modification causes the sampler to explore more, but if treated
without care, such as γ = 1.0 for un-pulled arms, it can cause such high variance
that the sampler collapses into a uniform sampler over arms. For the speaking
bandit, agents that receive more commands in a single timestep are less likely
to listen to my command, so positive samples are weighted by the probability of
listening if the listening agent were following a uniform distribution. Intuitively
if another agent listens to my command more than uniformly, it must prefer my
commands to some degree so I should keep talking to it as described in social
learning [26].

4.4 Multi-Armed Two-way Command Heuristic (MATCH)

MATCH consists of two modules, a speaker MAB and a listener MAB described
in section 4.3. The speaker MAB is rewarded when agents follow a command.
The listener MAB is rewarded by calculating advantage as in section 4.2 after
following a command. MATCH does not generate commands. For each speaker
bandit arm i referring to some agent i that is pulled, MATCH gets command
content from it’s policy by calling something like this:

command[i] = my_policy.take_action(observation_estimate[i])

Each listener bandit maintains an arm for its own policy because the ex-
pected advantage over actions or commands is unlikely to be mean-zero when
an agent is interacting with new teammates on which its value function was not
trained. In other words, every action might look good or bad if teammates are
better or worse than an agent’s training partners. By maintaining a ‘self’ arm,
the listener can normalize the quality of commands among this ad-hoc team.
The second source of bias comes from the fact that the agent is changing its
policy at runtime in response to commands. The value estimate may degrade
for trajectories that haven’t been seen in training. In order to overcome this
systemic bias, we recommend advantage estimates close to the multi-step Monte
Carlo estimate, GAE with λ close to 1.

A command as an action or list of actions allows for the analysis of com-
mand length’s effect on performance and advantage estimation quality. However,
MATCH only requires that a command can be generated by it’s underlying pol-
icy and then explicitly followed or ignored by another agent. If followed, the
listening agent is essentially handing its controls over to the commander tem-
porarily. The listener may commit to following the commander for more than
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one step in a row in order to calculate k-step returns or generalized advantage
to lower the bias of its estimate of the commander’s quality.

5 Environment, Lever-NVNTTT

We introduce “Lever-NvNTTT” as a new minimally complex benchmark for
cooperative multi-agent algorithms where two teams of ‘N’ teammates play Tic
Tac Toe against one another on a shared board. In Lever-NvNTTT, each agent
on a given team must choose the same square in order to place a piece. If the
agents choose different squares, then their turn is skipped. For this paper, the
opponent plays a random legal move each turn and the environment offers a
single terminal reward of 1.0 for a win, 0.0 for a tie, and -1.0 for a loss. This
environment encourages team consensus among several symmetric strategies in
the same way as the Lever Game introduced in [17]. A single agent taken at
two different stages of self-play training with parameter sharing will exhibit a
skill gap, but not an equilibrium selection problem. Agents trained from two
different starting seeds may exhibit equilibrium selection without exhibiting a
skill gap. We hope that NvNTTT will serve as an extremely computationally
cheap environment for debugging and benchmarking teamplay algorithms where
the researcher can directly select whether they are solving the skill gap problem
or the equilibrium selection problem.

6 Results

Crossplay results are shown in figure 1. We trained an initial population of PPO
and M-DQN agent policies via self-play Πsp over 5 seeds (A). We chose the
highest self play performing seeds, [0, 1], with average rewards R: {0.0, 0.4, 0.9}.

For our baselines, we trained a best response model to a uniform distribution
over Πsp to generate (PBR) (Graph E rows 1 and 2). Next, we trained best
response models to each individual policy in Πsp to represent the opponent
modeling upper bound (OM) where opponents are known exactly (Graph E
rows 4 and 5). Note that self-play with parameter sharing outperforms best
response because choosing the same square as your partner is always optimal
and parameter sharing causes agents to choose actions from the exact same
distribution. We also compare the performance of online RL after 500 episodes
(2,500 steps) of training with each partner to show that online Deep-RL alone
does not solve Ad-Hoc Teamplay in an ad-hoc timescale (Graph D). We then
show stubborn-MATCH where the row agent always ignores its partner and
always gives commands which represents an agent with aggressive priors set
correctly or incorrectly (Graph B). Finally, we show MATCH with 125 steps
and 1,000 steps and GAE (Graphs C and F).

We found little difference between advantage methods, but a complete set
of Cross-Play matrices are included in the repository. For Lever-NvNTTT, we
record the mean cross-play scores over 10 runs for each method in table 1 with
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Fig. 1. Cross-play Results for LeverTTT (A): No Ad-Hoc Paradigms Used, (B): Stub-
born MATCH run for 1,000 steps where the row player will always ignore and give a
command, (C): MATCH run for 125 steps, (D): The Row player was allowed to keep
learning via PPO or M-DQN for 2,500 steps, (E): Some of the row players (within
the red box) are replaced with population best response PBR, PPO with a stubborn
match, and optimistic opponent modeling (OM) where the training partner is known
exactly, (F): MATCH with GAE for 1,000 steps

the full set of cross-play matrices included in the supplementary materials. We
also include several illustrative cross-play tables here.

7 Discussion

7.1 Cross-Play Results

Graph A shows that there is an equilibrium selection problem because agents
with different seeds are unable to coordinate effectively (off-diagonal). Graph A
also shows a skill gap problem as agents trained with the same seed at different
performance checkpoints degrade in team performance. Graph B illustrates that
when the agents are running MATCH with a row player that has a strong prior
to send commands and ignore advice, the team performance approaches the row
player’s self-play performance. Figures C and F show MATCH when both agents
are flexible, which is less destructive than a stubborn row player who is incom-
petent. We show MATCH at two different time horizons to illustrate that the
non-stationary decay we implement causes MATCH to reach its performance
ceiling fairly quickly. Graph D shows the result when the individual agents are
allowed to continue learning online via their original RL algorithms. Some im-
provement is realized, but the timescale required for Deep RL is prohibitive for
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ad-hoc learning. Finally Graph E shows that a single unadaptive policy can’t
generalize to a population with non-complementary strategies (PBR). Oppo-
nent Modeling (OM) allows for partner-specific behavior and it almost reaches
the self-play upper bound, but it required the full 600,000 training time-steps
that each original RL agent trained for with each partner, and it requires that
partners are identifiable and similar to partners seen in training.

7.2 Final Remarks

In this work, we proposed a modular algorithm, MATCH, which can be added
to existing agents, allowing them to communicate through simple unambiguous
commands. MATCH is based on two normative beliefs about ad-hoc interaction.
First, I should listen to advice from people who have given me good advice in
the past. Second, I should offer advice to people who listen. These two basic
signals lead to a communication protocol that learns a directional graph where
every edge between agents that improves team performance is strengthened while
edges that degrade team performance are weakened until a local “maximum flow”
of performance between agents is achieved. Alternatively, two capable and in-
compatible agents can be thought of as sitting on a saddle point in the team
performance landscape. The stochasticity of MATCH’s MAB samplers and ad-
vantage leads to a team-wise stochastic gradient descent towards locally optimal
joint policy mixture without risking policy collapse or catastrophic forgetting be-
cause no network parameters are ever retrained. In addition to stability, MATCH
is a data efficient algorithm. For N agents, up to N2 commands can be sent per
timestep with N commands being followed by default. If multiple agents send
the same command to a single listener, then both commands can be “followed”,
leading to potentially more updates per command period. In total, 2N2 rela-
tionships are being learned, and at least N +N2 updates can be performed per
command step. Finally, state diversity and zero-shot strategies are compatible
with MATCH so long as agents generate a value function.

As the field of MARL expands, we hope to see a diverse set of methods de-
veloped to protect policies from collapsing under novel circumstances or during
ad-hoc coordination with new teammates. We also want to develop algorithms
that are capable of listening to instructions while exercising prudence when pre-
sented with potentially harmful or dangerous suggestions. We hope that methods
like MATCH may be a stepping stone to allow artificial agents to almost-always
accept input from humans via simple adjustable prior beliefs without blindly
following bad actors. Critically, we also want to develop agents which do not as-
sume that they are the most skilled agent possible in an environment. The ability
to deffer to and learn from more skilled entities, including humans, is valuable
for the longevity of a deployed autonomous system. Finally, transparent commu-
nication can expose agent intentions and shift liability towards the commanding
agent in events where autonomous systems fail. We hope that MATCH can open
more research into responsive, transparent, life-long learning autonomous sys-
tems.
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