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Abstract. Emergence of conventions and social norms has been an ac-
tive area of research in multiagent systems to facilitate coordination
in agent societies. Various learning approaches, interaction frameworks,
topological connections, and information availability assumptions have
been investigated to facilitate the emergence of conventions. Most of
these scenarios involve repeated bilateral interactions between learn-
ing agents choosing actions simultaneously and often modeled as stage
games. Many real-life conventions, however, involve sequential decision
making by two or more parties. In this paper, we investigate convention
emergence in agent populations repeatedly playing bilateral sequential
games. We investigate the development of conventions for exchange of
greetings. We show what assumptions and biases can consistently pro-
duce stable and beneficial conventions to emerge in sequential interaction
scenarios. Our experimental results and concomitant analysis sheds light
on the dynamics of the emergence of multi-step conventions with sequen-
tial interactions.
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1 Introduction

Whenever we speak a language or greet someone, we follow social conventions.
In other words, conventions determine the way we speak or greet. Conventions
and social norms can be considered as the grammar of social interactions [3].
Similar to a grammar, conventions and norms help us to differentiate what is
acceptable and what is not in a society. Without these shared rules, it becomes
either impossible or very costly to achieve goals due to social conflicts.

Emergence of conventions and social norms have been an active area of re-
search in multi-agent systems to facilitate coordination in agent societies [1, 8,
13, 16]. Various learning approaches [2, 18], interaction frameworks [12, 19], topo-
logical connections [14, 17], and information availability assumptions [10] have
been investigated to facilitate the emergence of conventions.

Most of these scenarios involve repeated bilateral interactions between learn-
ing agents choosing actions simultaneously and often modeled as stage games.
Many real-life conventions, however, involve sequential decision making by two
or more parties. For instance, greeting each other, a sequence of coordinated ac-
tions between a parent and a child [5], dialogues in a group [12]. Throughout this
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paper, we adopt the term either “multi-step” or “sequential” conventions which
can be defined as a sequence of coordinated actions of players.

It is critical to understand the dynamics of multi-step conventions to obtain
a better insight on the emergence of social conventions. Despite the prevalence
of such sequential decision making scenarios and criticality of the subject, re-
search on multi-step conventions did not exist and the research on the convention
emergence has been restricted to simultaneous decision making scenarios during
interactions.

In this paper, we study the emergence of multi-step conventions, a novel
interaction model, in agent populations repeatedly playing bilateral sequential
games. We investigate the development of conventions for scenarios like exchange
of greetings (shaking hands, kissing, hugging, bowing, or a simple “hi!”). To do
so, we consider the sequential coordination game where the players choose their
actions sequentially. Hence, the second player can observe the action chosen by
the first player and then chooses her action accordingly. The players obtain a
positive reward in case of no conflict. To make action decisions, agents learn from
a combination of their past interactions and observations of their neighbors. We
carefully conducted an extensive set of experiments to examine the influence
of key factors such as decision models, different topologies and neighborhood
models, number of actions available, and number of agents, on the emergence of
multi-step conventions. Our experimental results and concomitant analysis shed
light on the dynamics of the emergence of multi-step conventions with sequential
interactions.

The remainder of the paper is structured as follows. We first present related
work. Following, the society model that is considered in this research is outlined,
and our empirical methodology is explained. The results of our experiments are
presented in the subsequent section, where we also discuss the findings. The
paper concludes with a summary and directions for future research.

2 Related Work

Over the past two decades, a considerable amount of literature has been pub-
lished on the emergence of norms and conventions in multi-agent systems. What
we know about the emergence of social norms is largely based on experimen-
tal studies that investigate the conditions under which norms are followed by
the majority of society. These studies investigated the mechanisms that lead to
the emergence of norms and conventions and the influence of individual and
environmental factors.

First, it is critical to highlight the difference between social norms and con-
ventions, which is often blurred. According to Lewis [11], conventions are the
equilibria of coordination games. In these games, there are multiple equilibria
and only one of them will be the conventions as a consequence of interactions of
the individuals. An individual’s interest on a specific action is conditional upon
the action choices of other individuals in the society, i.e., an action is chosen
only if most people follow it [3]. In contrast to conventions, it may not be an
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individual’s immediate interest to conform with the social norm. For example, a
player may be tempted to defect even if the social norm is to cooperate. In this
case, the individual’s interest conflict with the collective interests in contrast to
conventions [10].

To date, various mechanisms have been suggested towards achieving conven-
tion emergence in agent societies. Reinforcement learning is the most prevalent
learning technique towards forming social conventions [1, 10, 16] in multi-agent
systems literature. Airiau et al. [2] showed that emergence of conventions can be
achieved through social learning, i.e., learning from interaction experiences. Yu
et al. [18] proposes a novel spiking neural learning model correlating microscopic
neural activities with global social norms.

Topology is a significant construct in the life cycle of conventions. Hasan
et al. [7] demonstrate that convention emerge efficiently despite the large con-
vention space when the agents use a neighborhood reorganization mechanism.
Similary, Centola and Baronchelli [4] performed an interesting series of experi-
ments with human subjects showing that simple changes in the network struc-
ture lead to global conventions. Franks et al. [6] proposed recruiting a number of
influencer agents with certain conventions, to facilitate the emergence of high-
quality conventions efficiently. Hu and Leung [8] demonstrated that agents can
achieve coordination via establishing diverse stable local conventions which is
still a solution to coordination issue as an alternative to the global conventions.

There are various aspects of agent societies effecting the emergence of conven-
tions. Though majority of the studies consider one-to-one interactions as pairs
among the agent populations [1, 8, 13, 16], one-to-many interactions may occur in
real life. Wang et al. [17] studied the emergence of conventions when higher-order
interaction occurs in a group with two or more agents.

Overall, an extensive research on convention emergence in multi-agent sys-
tems have been conducted. While a large body of work has focused on modeling
interactions as stage games where the players choose actions simultaneously, we
instead considered repeated interactions where the players take actions sequen-
tially with complete information.

3 Preliminaries

3.1 The Sequential Game of Coordination

Figure 1 presents the coordination game where players can gain positive (zero)
reward as a result of coordination (anti-coordination) in their actions. Specif-
ically, the positive reward is chosen to be one, as shown in the leaves of the
game tree in Figure 1, for the sake of simplicity. In this game, the first player
makes a decision. After observing the first player’s action, i.e., complete infor-
mation, the second player decides what to play. Then the corresponding payoffs
are distributed among the players.
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Fig. 1. The sequential game of coordination: If Agent 1 and 2 select the same options
(A or B) both receive a reward of 1. Otherwise, no reward is provided.

3.2 The Interaction Model

Our model considers a population of agents, N, where each agent is connected
to a subset of the agents according to a static network topology, T. The agents
in the population repeatedly play the coordination game with their neighbors
for a number of episodes, E.

At the beginning of each episode, each agent is paired with one of its neigh-
bors randomly to play the coordination game as follows. Each agent will have
the opportunity to be the first player in each episode. The first player chooses
an action a1 ∈ A, where A is the action space.

After observing the action of the first player, the second player chooses its
action a2 ∈ A. It should also be noted that in each episode, some agents may
have more than one opportunity to be the second player due to the fact that the
first player is randomly paired with one of its neighbors. The action sequence
⟨a1, a2⟩ determines the outcome from this interaction. Outcomes that conform
to conventions (i.e. a1 = a2) are rewarded higher than outcomes that fail to
conform.

Network Topologies: We investigate the emergence of conventions in the
presence of three well-known representative topologies: (a) Toroidal grid, (b)
Small-world, (c) Scale-free, and (d) Complete graph (an agent can interact with
any other agent in the population).

Fig. 2. von Neumann and Moore neighborhood
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Neighborhood: In case of grid topology, we considered two different neigh-
borhood models: i. von Neumann and ii. Moore (see Figure 2). According to the
von Neumann neighborhood, all the agents that are adjacent to the central agent
are considered as neighbors [15]. On the other hand, in a Moore neighborhood,
all eight agents surrounding the central agent are considered neighbors.

Rewards: If the two players choose the same action, they will receive the
same, high reward. The focus is on whether or not the agents are coordinated;
the actual action they coordinate on does not affect the reward. It should also
be noted that as long as the coordination occurs, it does not matter whether the
chosen action is the global convention or not.

Algorithm 1 describes the simulation of sequential game of coordination.

Algorithm 1: Sequential Coordination Game
Input : N, T, E, kobs, ϵinit, ϵend

1 Initialize Agents with N, T, E, kobs, ϵinit, ϵend

2 for episode = 1 to E do
3 foreach agent i in N do
4 j ←− selectANeighborRandomly(i, T)
5 a1 ←− Agents[i].getAction(0)
6 a2 ←− Agents[j].getAction(1, a1)
7 r1, r2 ←− playGame(a1, a2)
8 Agents[i].updateReward(r1)
9 Agents[j].updateReward(r2)

3.3 Agent’s Decision Model

In our framework, the decision making process followed by an agent differs based
on whether it is the first or the second player in the coordination game. Compar-
ing the two decisions, the first player’s decision process plays a more critical role
in determining the convention. On the other hand, coordination, choosing the
same action with the first player, is the second player’s best interest after observ-
ing the first player’s move. Thus, the second player employs a simpler decision
process while the first player employs a comprehensive one which considers the
three criteria explained below.

Criterion 1: Q-learning Agents employ the Q-learning mechanism which has
the following three states:

1. The agent is the first player (no previous action).
2. The agent is the second player and the first player chose the first action.
3. The agent is the second player and the first player chose the second action.
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In each state, two actions defined in the coordination game are available, for
a total of six q-values per agent.

When updating the Q-value of a given state&action pair, the learning rate
αt is 1/(st+1), where st is the number of times the Q-value has previously been
updated. This forms a running average when utilized in the Q-update equation.
rt is the reward episode t.

Q(s,a) = (1− αt) ·Q(s′,a′) + αt · rt.

The exploration likelihood ϵ is linearly decreased from a high initial value,
ϵinit, until a lower threshold, ϵend is reached.

ϵt = (ϵinit − ϵend) · decay(t) + ϵend.

ϵt is the exploration probability in episode t. decay(t) controls the interpola-
tion from ϵinit to ϵend of the exploration likelihood over time. In our framework,
the following decay function is used.

decay(t) = max(1− (t/tme), 0)

tme is the episode at which the exploration probability reaches its minimum ϵend.
ϵt is the exploration probability of choosing a random action, while 1− ϵt is the
exploitation probability of choosing the action with maximum Q-value.

Pq(a) =

{
1 if argmaxa′Q(s,a′) = a

0 else

Criterion 2: Experiences as The Second Player Each agent has a record
of all the actions it has observed as the second player from its first player partner
in its binary interactions. When deciding which action to choose, it samples from
the frequency distribution of the observed actions taken by its partner over the
past K interactions as the second player (represented by {a1, a2, ..., ak}).

Pp(a) =
|{a = ai|1 ≤ i ≤ k}|

k

Criterion 3: Observations of Neighbors For this criterion, the agent sam-
ples from the frequency distribution of the most recent action taken by all of its
neighbors as the first player. The probability of selecting action a for an agent
with neighborhood n is:

Pn(a) =
|{a = aj |j ∈ n}|

|n|

3.4 Epsilon Greedy Exploration

Agents also employ ϵ−Greedy exploration. With probability ϵ, agents will choose
a random action from a uniform distribution PU (a) =

1
count(A) .
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Varying Weights of Decision Traits: Each criterion is assigned a specific weight
to reflect the degree of influence it has on the action choice made by the agent.
The weight for the criterion 1 (Q-value) is wq, the weight for the criterion 2
(past partners) is wp, and the weight for the criterion 3 (neighbors) is wn. The
full probability distribution is:

P (a) = ϵtPU (a) + (1− ϵt)(wqPq(a) + wpPp(a) + wnPn(a))

The second player chooses actions based only on the Q-value estimates of the
actions in A at its state S defined by the action of the first player, subject to
epsilon greedy exploration (just like the first player with wq = 1).

4 Experimental Setting

We run simulations with a population of N = 100 homogeneous agents that are
situated according to one of the topologies.

The ϵinit and ϵend are set to 0.9 and 0.001, respectively. When evaluating
actions observed as second player, the agents take into account the past ten
actions, i.e. kobs = 10, observed. The number of convergence will be denoted as
Nconv, while the number of experiments, Nexp, and the number of episodes, E
per experiment will vary depending on the type of experiment being conducted.
Figure 3 indicates the default values of the parameters for experimental setting.

Convergence is considered to have taken place if 90% of the agents have
matching selections in any of the episodes being run in an experiment [9].

ϵinit: 0.9 N = 100
ϵend: 0.001 kobs = 10

Fig. 3. Default values of the parameters in the experiments

5 Results

In this section, we will evaluate the results of our investigation on the emergence
of convention among agents in a sequential decision-making scenario.

5.1 Effect of Varying Weights on Convergence

We begin by assessing the effect that each weight within the criteria of the deci-
sion allocation framework has on the convergence of convention among agents.

Analysis on wn: Table 1 indicates that the neighborhood criteria wn pro-
duced the greatest number of convergence within the given number of episodes
being run per experiment. In other words, the agents’ observations of the actions
undertaken by all neighboring entities within the environment had the most sig-
nificant influence on the decision-making process of the agent, thereby playing
a pivotal role in shaping the selections it ultimately made.
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Table 1. Effects of varying weights for Criteria 1-3 from the decision allocation frame-
work. A1 and A2 represent the counts of convergence to the two actions, while NC
represents the number of non-converging experiments (Nexp = 50, E = 2000)

Weights von Neumann Moore All Small-World Scale-Free
wq wp wn A1 A2 NC A1 A2 NC A1 A2 NC A1 A2 NC A1 A2 NC
0.33 0.33 0.33 0 0 50 1 0 49 0 0 50 0 0 50 0 0 50
1 0 0 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50
0 1 0 17 19 14 22 10 18 22 13 15 9 16 25 13 7 30
0 0 1 25 25 0 19 31 0 25 25 0 23 27 0 20 30 0

0.1 0.45 0.45 20 22 8 27 12 11 25 22 3 18 7 25 24 14 12
0.45 0.1 0.45 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50
0.45 0.45 0.1 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50

Analysis on wp: Agents that relied on their partners’ previous observations
as second players (wp) also had a reasonable chance for convergence. As results
from Table 1 indicate, some convergence occurred, but the number of it occur-
ring was less than when criteria three was solely evaluated (i.e. wn = 1). To
gain insight to the underlying cause, we examined the effect that increasing the
number of episodes being run per experiment would have on the overall number
of convergence taking place.

Table 2 reveals that after running 50 experiments of 10,000 episodes, an in-
crease in the number of convergence is experienced in almost all of the neighbor-
hood types. This indicated that the time needed to reach convergence is longer
when wp = 1 than when wn = 1.

Table 2. Effect of increasing E to 10,000 per experiment when considering only wp

during action selection (Nexp = 50)

Weights von Neumann Moore All Small-World Scale-Free
wq wp wn A1 A2 NC A1 A2 NC A1 A2 NC A1 A2 NC A1 A2 NC
0 1 0 28 22 0 26 24 0 25 25 0 19 31 0 25 25 0

Analysis on wq: While wp and wn had a pivotal role in driving the convergence
process, wq, as reflected in Table 1, had no discernible effect on the system’s
dynamics, resulting in no meaningful convergence behavior. With the rewards of
action 1 and 2 being equal as long as both agents agree upon the same action,
the Q-Value estimates for both actions will be substantially identical over time,
thus resulting in the absence of convergence. Figure 4 illustrates by showing
how all agents have identical Q-values for both actions, indicating an absence of
preference of either actions.
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Fig. 4. Each Color Represents the an Agent’s Q-Value as the first player per episode
for a) Action 1 and b) Action 2 (von Neumann neighborhood: wq = 1, E = 550000)

5.2 Switches in Convergence Patterns

As indicated in the previous portion of Section 5, a convergence was claimed to
have taken place when at least 90% of the agents demonstrated alignment in their
selections during any given time of the experiment. Upon closer examination of
the convergence pattern when wn = 1, an unusual pattern was observed when
first player considered actions of its neighbors as first players, which is illustrated
in Figure 5. When the first player exclusively took its neighboring first player
actions into account, there was an observance of fluctuations in convergence
patterns, with the transitions of convergence patterns frequently taking place
after 1000 or more episodes.

Fig. 5. Switches in convergence pattern when wn = 1 and ϵend = 0.001, (x-axis: episode
number and y-axis: fraction of agents selecting each action; E = 2000)

The results of Figure 5 indicate that despite a low ϵend value of 0.001, it
can have an influence on the convergence pattern, particularly over the course
of thousands of episodes. Therefore, a smaller ϵend reduces the likelihood that
convergence-switching occurs. Figure 6 illustrates how a decrease in ϵend value
from 0.001 to 0.00001 significantly decreases the amount of convergence-switching
observed within the 2000 episodes. However, it should be noted that it does
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not completely eliminate convergence-switching. Rather, it decreases the rate
at which the switching occurs. The only way to truly eliminate convergence
switching is to set ϵend to zero.

Fig. 6. Convergence pattern when wn = 1 and ϵend = 0.00001 (E = 2000)

When considering observations made only by the second player (i.e. wp=1),
the convergence-switching pattern can still be observed, but the episodes re-
quired to change to the new norm afterwards occurs at a significantly slower
rate. Due to the slow switching rate, there are periodic episodes at which con-
vergence among agents is not observed.

5.3 Closer Look Into Convergence Pattern When Only Observation
as Second Player is Considered for Decision Making

While the results from Table 2 indicates a slight increase in the number of
convergence when the number of episodes run per experiment increases. It does
not provide a comprehensive explanation as to why there is a disparity in the
convergence rate between the cases when wp = 1 and wn = 1.

When the convergence pattern was compared graphically between the two
cases (wp = 1 and wn = 1), the pattern in wp = 1 resembled an elongated
version of the pattern in wn = 1. 20,000 episodes were run for the case in which
wp = 1 in order to be able to observe a similar pattern that can be observed when
wn = 1 with only 2000 episodes. As shown in Figure 7, the complete switching
of convergence when wp = 1 takes longer duration, making it highly more likely
that no convergence is observed for a period of time throughout the experiment.

To better understand the cause of the slower convergence rate at wp = 1, an
assessment was made to investigate whether the number of past actions, kobs,
an agent observed of its neighbor had a significant influence on the convergence
rate when wp = 1.

Figure 8 illustrates that as the value of kobs increases, the likelihood of ob-
serving convergence within a given number of episode decreases. However, at
kobs = 1, the convergence pattern resembles that of wn = 1 convergence pat-
terns in Figure 5, including the convergence switch patterns.
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Fig. 7. Convergence pattern comparison between the cases when wp = 1 (in 20,000
episodes) and wn = 1 (in 2,000 episodes)

Fig. 8. Effect of varying kobs values in von Neumann neighborhood (x-axis: episode
number in increments of 500, and y-axis: fraction of agents selecting each action; E =
2000)

Due to the fact that convergence pattern can slightly vary under the same
kobs value, more experiments were conducted to confirm that the value of kobs
was indeed having a significant impact on the convergence pattern when wp = 1.
Figure 9 and Table 3 depict the results of 50 experiments with 2000 episodes
being run for each kobs value. As the kobs value increased, the amount of episodes
it took for the first convergence to take place likewise increased. This result aligns
with the patterns shown in both Figure 7 and Figure 8, where increase in kobs
leads to slower convergence movement in wp = 1 compared to that of when
wn = 1.

Table 4 demonstrates that with kobs = 1, the results have strong resemblance
to the number of convergence that occurred when wn = 1 as shown in Table 1.
This indicates that considering past actions from earlier nodes lead to increased
noise, thereby overfitting to past experiences and delaying convergence. Based
on the effect the value of kobs had on the convergence pattern when wp = 1, the
noise had a more significant effect on the number of convergence observed when
wp = 1 than when wn = 1.

5.4 Effect of Varying the Number of Actions Available

In this section of the study, we will elaborate on the effects of increasing the
number of actions available for agents to select on convergence patterns. We
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Fig. 9. First episode at which convergence occurs for different kobs values (Nexp = 50,
E = 2000)

Table 3. Mean episode of first convergence with standard deviation (E = 2000, Nexp =
50)

kobs Mean Std
1 249.28 44.515
2 342.50 156.999
4 608.78 320.686
8 1284.36 778.200
10 1716.7 1324.780
20 6644.12 4544.923
30 12517.18 10368.045

varied the number of actions up to 100. Based on the depictions in Figure 10,
where wp = 1, convergence was observed for all scenarios that were tested. As the
number of actions increased, the episode at which the first convergence occurred
was delayed to a later point in the experiment.

Similar to when wp = 1, convergence is observed for all scenarios when
wn = 1. However, as the number of actions increased, the number of switches in
convergence per experiment oftentimes slightly increased. However, as shown in
Figure 11, there can be periodic moments in which the convergence switching
rate is slower than when there are less actions (e.g. episodes 1000-8500). Never-
theless, after the around episode 8500, the convergence switching rate drastically
increases.

It should be noted that whenever finding the max Q-value at the initial
state, where all Q-values are zero, the Q-value arg max should be chosen ran-
domly rather than selecting the first Q-value it sees. As Figure 12 depicts, if
this precaution is not followed in scenarios such as wn = 1, it will result in a
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Table 4. Mean episode of first convergence with standard deviation (E=2000, Nexp =
50)

Weights von Neumann Moore All Small-World Scale-Free
wq wp wn A1 A2 NC A1 A2 NC A1 A2 NC A1 A2 NC A1 A2 NC
0 1 0 22 28 0 28 22 0 23 27 0 25 25 0 27 23 0

Fig. 10. Effects of increasing the action space in von Neumann neighborhood (x-axis:
Episode number, y-axis: Fraction of agents who have selected each action, wp = 1,
E = 10000)

Fig. 11. Effects of increasing the action space in von Neumann neighborhood (x-axis:
Episode number, y-axis: Fraction of agents who have selected each action, wn = 1,
E = 5000)

situation where half of the population converges to an action, while the other
half converges to other actions. In the scenario for Figure 12, there are 100 ac-
tions, where each action number is assigned to the designated agent at the initial
episode.

5.5 Effect of Varying the Number of Agents

Additionally, we conducted experiments to explore the impact of changing the
number of agents, N, on the overall convergence pattern. Twenty experiments,
2000 episodes each, were conducted for each selected value of N to analyze the
mean episode at which the first convergence takes place, µfc.

As demonstrated in Table 5, as the number of agents increased, µfc also rose.
Along with the linear regression model of y = 0.622783x + 140.91105, a strong
correlation (r=0.99) between the number of agents and µfc can be observed.
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Fig. 12. Effects of not randomly choosing max Q-value when there are more than one
max value (100 actions, wn = 1, E=5000, von Neumann neighborhood)

N 200 300 400 500 600 700
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
278.86 68.85 306.08 95.35 395.32 168.99 464.50 224.94 494.00 269.605 588.22 298.72

Table 5. Effect of increasing the number of agents on the convergence count in 20
experiments in von Neumann neighborhood (wn = 1, E = 2000)

6 Discussions

6.1 Q-Learning Criterion

The lack of norm convergence based on solely Q-learners is explained by the lack
of pressure to select a pure single action strategy. Each agent quickly learns the
best action as the second player to each first player action, so there is not enough
time for a population of agents with suboptimal second actions to influence the
strategy of the first move. In addition, while the exploration rate allows agents to
learn about both actions for sufficient episodes, after the epsilon value decreases
agents will arbitrarily prefer one action to the other. Since this does not depend
on the population of other agents, each agent independently follows one action
as first player and sticks to it. Continued exploration alongside a lack of pressure
to form a norm results in a highly mixed, stable population with no norm.

6.2 Neighborhood Criterion

The norm switching behavior demonstrated in Figure 5 can be traced to the
action choice function that the agents use.

At any individual episode of the simulation, each agent Ai takes action ai
and observes a set of other agents which form a neighborhood of adjacent agents
Aj ∈ n(Ai) with count |n(Ai)| = ni. Then each agent in turn chooses to adopt a
new action a′i, with proportion |{a′

i=aj |Aj∈n(Ai)}|
ni

This means that the expected
number of agents that copy the strategy of agent ai is ΣAj∈n(Ai)

1
nj

. When ni =

nj , as in the fully connected case, this expected value is 1.
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In addition, in the case of any arbitrary set of connections, the average ex-
pected number of agents that will copy the action of an agent is also 1, indepen-
dent of the number of the actions of other agents.

1

N
Σi(ΣAj∈n(Ai)

1

nj
) =

1

N
Σini

1

ni
=

1

N
N = 1

Therefore, if an agent is selected uniformly at random, the expected number
of agents influenced by the strategy of that agent at the next step is 1. The
actual distribution leads to most agents’ influence disappearing after one or two
rounds, with a small number of agents influencing the whole population. This
is a direct result of using |{a′

i=aj |Aj∈n(Ai)}|
ni

as the probability for selecting an
action from a neighborhood.

The approximate rate of convergence to a majority norm can be found by
calculating the expected number of rounds until the number of agents whose
initial strategy affects the current pool of strategies decreases to 1. For a fully
connected pool of 100 agents, 50% of the time this occurs before round 171.

The iterative algorithm solves issues with parity that could otherwise cause
a connected agent network without odd cycles to behave like two distinct sub-
networks with opposite parities, like a checkerboard.

6.3 Partner History Criterion

Agents using the partner history criterion exhibit a wide range of behaviors de-
pending on the hyper-parameters kobs and ϵ. With very low kobs like 1 and 2,
they behave similar to agents using the wn neighborhood criteria. However, a
large kobs has a similar effect to having a higher agent count, resulting in slower
convergence. When population behavior change is slow, the norm switching be-
havior that can be triggered by epsilon-greedy exploration behavior and general
stochastic nature of the agent choices can cause extended periods of simulation
with no convergence.

6.4 Neighborhoods

While neighborhood shape plays a role in convergence time, ultimately connected
agent graphs were influenced more strongly by other hyper-parameters like action
criteria and exploration probability.

6.5 Takeaways

In scenarios where selective pressure does not bias one solution over another,
learning is not sufficient to form a norm. We show that in some conditions an
imitation scheme is sufficient to facilitate norm emergence. The findings from
this study should help inform future work in norm emergence for cooperative
sequential games, which are a good analogue for many more complex interac-
tions, such as conversation. In these scenarios, understanding how norms emerge



16 Marina Katoh et al.

and change can lead to improvements in cooperative agent design. In these sce-
narios, predicting which convention will emerge is a harder problem for future
exploration. Some real-life scenarios are best modeled by agents that follow the
norm with a high probability, while other real-life scenarios are best modeled
by agents that break from the norm with a high probability. Finally, there are
real-life scenarios where alternative norms occasionally take over a population.
We show that sampling actions uniformly from other agents within a local or
global region results in norm switching behavior when mutations appear within
the population.

7 Conclusions

The purpose of this study was to investigate the emergence of the conventions on
repeated the sequential coordination games where the first and second players
take their actions in order, rather than simultaneously. The agents make their
decision of action based on their game experiences, observations, and the first
player’s action (if the agent is the second player).

We observed that both observation of neighbors and past experiences have
a significant effect on the emergence of conventions. Comparing the two, con-
vention emerges faster when the agents consider their observations of neighbors.
As expected, q-learning could not achieve emergence at all as the second player
follows the first player’s choice regardless of the action chosen. The second major
finding was that the switches in emerged convention occurs due to the explo-
ration policy. Furthermore, the frequency of the switches is influenced by the
criterion considered either observations or past experiences, the window length
of observations. Increasing the number of actions and agents had a negative
effect on convergence.

Given the fact that occurrence of non-simultaneous actions in an interac-
tion are prevalent in real life scenarios, this research offers valuable insights for
understanding the emergence patterns in situations where the actions are taken
sequentially. This study has been one of the first attempts to thoroughly examine
the stage games in the context of convention emergence. This sequential inter-
action model must be studied further in other scenarios such as solving social
dilemmas.
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