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Abstract. Ad hoc teamwork focuses on enabling an agent to collabo-
rate with others without prior coordination. This is a central problem
in the coordination of open multiagent systems in many practical ap-
plications. Data-driven learning methods represent the state of the art
in ad hoc teamwork. They use a large labeled dataset of prior obser-
vations to model the behavior of other agent types and to determine
the ad hoc agent’s behavior. These methods are computationally ex-
pensive, lack transparency, and make it difficult to adapt to changes
in team composition. Our recent work introduced an architecture that
determined an ad hoc agent’s behavior based on non-monotonic logical
reasoning with prior commonsense domain knowledge and models that
were learned from limited examples to predict other agents’ behavior.
In this paper, we expand the architecture’s capabilities, supporting: (a)
online adaptation and choice of learned models of other agents’ behavior;
and (b) collaboration in the presence of partial observability and limited
communication. Experimental evaluation in two simulated benchmark
domains for ad hoc teamwork demonstrates performance comparable or
better than state of the art data-driven baselines in simple and complex
scenarios, particularly in the presence of limited training data, partial
observability, and changes in team composition.

Keywords: Non-monotonic logical reasoning · Ecological rationality ·
Ad hoc teamwork.

1 Introduction

Ad Hoc Teamwork (AHT) refers to the problem of enabling an agent to col-
laborate with previously unknown teammates toward a common goal [27]. This
is a central problem in the coordination and governance of multiagent teams
deployed in many practical applications such as disaster rescue and surveillance.
As motivating examples, consider the simulated multiagent collaboration do-
main Fort Attack (FA, Figure 1a), where a team of guards has to protect a fort
from a team of attackers [10], and the Half Field Offense domain (HFO, Fig-
ure 2), where a team of soccer-playing agents has to score a goal while playing
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(a) Fully observable (b) Partial observable

Fig. 1: Scenarios in the fort attack environment: (a) guards protecting a fort from
attackers; (b) domain has a region of reduced perception.

(a) Limited version (b) Full version

Fig. 2: Scenarios in the half-field offense environment: offense players trying to
score a goal in the presence of a team of defense players in the (a) limited (2v2)
setting; and (b) full (4v5) setting.

against defenders [17]. Although collaboration is beneficial and often necessary
for success in such domains, agents in these domains have limited knowledge of
each other and no prior experience of working as a team. Furthermore, team
composition may change unexpectedly (e.g., one of the offense team players may
be sent off the field for some time), each agent may only be able to observe part
of the environment (Figure 1b), and the bandwidth available for communicating
with other agents may be limited.

The state of the art in AHT has moved from the use of predetermined policies
for selecting actions in specific states to focusing on the development of a “data-
driven" component. This component uses probabilistic methods or deep network
methods to model the behavior (i.e., the selection of specific actions in specific
states) of other agents or agent types, and optimize the behavior of the ad hoc
agent, based on a long history of prior experience. It is difficult to obtain such
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training examples in many practical domains and computationally expensive to
build the necessary models. Also, the trained models lack transparency and make
it difficult to adapt to changes, e.g., in team composition. In a departure from
existing work, we pursue a cognitive systems approach based on the observation
that AHT jointly poses representation, reasoning, and learning challenges, and
that the focus on data-driven optimization makes it difficult to leverage the rich
commonsense domain knowledge available in many domains. Specifically, our
knowledge-driven AHT architecture (KAT) supports three capabilities:

1. Non-monotonic logical reasoning with prior commonsense domain knowledge
and rapidly-learned predictive models of other agents’ behaviors;

2. Use of reasoning and observations to trigger the selection of relevant agent
behavior models and the learning of new models as needed; and

3. Use of reasoning to guide collaboration with teammates under partial ob-
servability and limited communication.

Our recent work provided a proof of concept demonstration of the first capa-
bility in the FA domain [11]. In this paper, we use Answer Set Prolog (ASP)
for non-monotonic logical reasoning, and heuristic methods based on ecological
rationality principles [15] for rapidly learning and revising the agent behavior
models. We ground and evaluate our architecture’s capabilities in the FA domain
and the more complex HFO domain, demonstrating performance comparable or
better than state of the art data-driven methods in simple and complex domains,
even in the presence of partial observability and changes in team composition.

2 Related Work

There has been considerable prior work in AHT under different names for around
15 years, as described in a recent survey paper [20]. Early work used specific
protocols (‘plays’) to define how an agent should behave in different scenarios
(states) [8]. Subsequent work used sample-based methods such as Upper Con-
fidence bounds for Trees (UCT) [7], or combined UCT with other methods to
learn models from historical data and use them for online planning [28]. More
recent methods have included a key data-driven component, using probabilistic,
deep-network, and reinforcement learning (RL)-based methods to learn action
(behavior) choice policies for different types of teammates from a lengthy his-
tory or prior observations of similar agents or situations [6, 21]. For example, RL
methods have been used to identify and use the most useful policy (from a set
of learned policies) for each situation [6], or to consider the predictions from all
learned policies when selecting an ad hoc agent’s actions for different types of
agents [22]. Also, attention-based deep neural networks have been used to jointly
learn policies for different agent types [9], and to account for different team com-
positions [21]. Other work has combined sampling strategies with such learning
methods in an attempt to optimize performance [29]. There has also been work
on using deep networks to learn sequential and hierarchical models, which are
used with approximate belief inference methods [30]. In addition, researchers



4 Hasra Dodampegama, Mohan Sridharan

have explored different communication strategies for AHT, e.g., a multiagent,
multi-armed bandit formulation to broadcast messages to teammates while in-
curring a cost [6], or assessing the cost and value of different queries in a heuristic
algorithm [19]. All these methods require considerable resources (e.g., computa-
tion, memory, training examples), build opaque models, and make it difficult to
adapt to unexpected changes, e.g., in team composition.

There has been considerable research in developing action languages and
logics for single and multiagent domains. This includes work on developing an
action language (A) for an agent to compute cooperative actions in multiagent
domains [25], and an exploration of using action language C for modeling bench-
mark multiagent domains with minimal extensions [5]. Action language B has
also been combined with Prolog and ASP to implement a distributed multia-
gent planning system that supports communication in a team of collaborative
agents [24]. More recent work has explored the use of B for planning in single
agents and multiagent teams, including a distributed planning approach for non-
cooperative or partially-collaborative agents using negotiations [23]. To model re-
alistic interactions, researchers have introduced specific action types, e.g., world-
altering, sensing, and communication actions, to manipulate the knowledge of
agents in the domain [4]. Recent work has represented these action types in
action language mA∗ while also supporting epistemic planning and dynamic
awareness of action occurrences [3]. These studies have demonstrated that ASP
can be used to represent and reason in multiagent domains. Our work draws on
these findings to address the reasoning and learning challenges faced by an ad
hoc agent that has to collaborate with teammates under conditions of partial
observability and limited communication.

3 Architecture

Figure 3 is an overview of our KAT architecture. Our ad hoc agent (one member
of a team) performs non-monotonic logical reasoning with prior commonsense
domain knowledge, and with incrementally learned behavior models of team-
mate and opponent agents. At each step, valid observations of the domain state
are available to all the agents, who then independently determine and execute
their individual actions in the environment. The architecture’s components are
described using the following two example domains.

Example 1 [Fort Attack (FA) Domain]
There are three guards protecting a fort from three attackers (Figure 1). One
guard is the ad hoc agent that can adapt to changes in the team and domain.
An episode ends if: (a) guards manage to protect the fort for a period of time;
(b) all attackers are eliminated; or (c) any attacker reaches the fort.

At each step, each agent can choose to move in any of the four cardinal
direction with a particular velocity, turn clockwise or anticlockwise, do nothing,
or shoot; any agent in the shooting range is killed. The environment provides
four types of built-in policies for guards and attackers (see Section 4.1). The
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Fig. 3: Our KAT architecture combines complementary strengths of knowledge-
based and data-driven heuristic reasoning and learning.

original FA domain is fully observable, i.e., each agent can observe the state
of other agents at each step. We simulate partial observability by creating a
"forest"; any agent in this region is hidden from others.

Example 2 [Half Field Offense (HFO) Domain]
This simulated 2D soccer domain is a complex benchmark for multiagent and
AHT methods [17]. The ad hoc agent is a member of the offensive team that seeks
to score a goal against a defensive team. An episode ends when: (a) offensive
team scores a goal; (b) ball leaves field; (c) defensive team captures the ball; or
(d) maximum episode length (500) is reached.

There are two version of the domain: (i) limited version: two offense agents
and two defense agents (including goalkeeper); (ii) full version: four offense
agents, five defense agents (including goalkeeper). Agents other than the ad
hoc agent are selected from teams created in the RoboCup 2D simulation league
competitions. Similar to existing AHT methods, our other offensive team agents
were based on the binary files of five teams: helios, gliders, cyrus, axiom, aut.
For defenders, we use agent2D agents, whose policy was derived from helios. The
strategies of these agents were trained using data-driven (probabilistic, deep, re-
inforcement) learning methods. HFO supports two state space abstractions: low,
high; we use the high-level feature set. Also, there are three abstractions of the
action space: primitive, mid-level, and high-level; we use a combination of mid-
level and high-level actions.

Prior commonsense domain knowledge in the FA domain and the HFO do-
main includes relational descriptions of some domain attributes (e.g., safe re-
gions), agent attributes (e.g., location), default statements, and axioms govern-
ing change, e.g., an agent can only move to a location nearby, only shoot others
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within its shooting range (FA), and only score a goal from a certain angle (HFO).
This knowledge determines changes in state when any action is executed; it may
also need to be revised over time.

3.1 Knowledge Representation and Reasoning

To describe the transition diagrams of our domains, we use an extension of
the action language ALd [13]. The domain representation consists of a sys-
tem description D, a collection of statements of ALd, and a history H. D
has a sorted signature Σ which consists of actions, statics, i.e., domain at-
tributes whose values cannot be changed, and fluents, i.e., attributes whose
values can be changed by actions. For example, Σ in the HFO domain consists
of basic sorts such as ad_hoc_agent, external_agent, agent, offense_agent,
defense_agent, x_val, y_val, and sort step for temporal reasoning. Sorts are
arranged hierarchically, with some sorts (e.g., offense_agent, defense_agent,)
being subsorts of other sorts (external_agent). Statics in Σ are relations such
as next_to(x_val, y_val, x_val, y_val) that encode the relative arrangement of
locations. Σ includes inertial fluents that obey inertia laws and can be changed
by actions, and defined fluents that do not obey inertia laws are not directly
changed by actions. Inertial fluents in the HFO domain include:

loc(ad_hoc_agent, x_val, y_val), ball_loc(x_val, y_val), has_ball(agent)
(1)

which describes the location of the ad hoc agent, location of the ball, and the
agent that has control of the ball. Defined fluents of the HFO domain include:

agent_loc(external_agent, x_val, y_val), (2)
defense_close(agent, defense_agent), far_from_goal(ad_hoc_agent)

which encode the location of the external (i.e., non ad hoc) agents, and describe
whether a defense agent is too close to another agent, and whether the ad hoc
agent is far from the goal. Next, actions in the HFO domain include:

move(ad_hoc_agent, x_val, y_val), kick_goal(ad_hoc_agent), (3)
dribble(ad_hoc_agent, x_val, y_val), pass(ad_hoc_agent, offense_agent)

which describe the ad hoc agent’s ability to move to a location, kick the ball
toward the goal, dribble the ball to a particular location, and pass the ball
to a teammate. Σ also has relation holds(fluent, step), which indicates that a
particular fluent is true at a given step, and occurs(action, step), which states
that a particular action occurs in a plan at a particular step.

Given Σ, axioms in D describe the dynamics of the domain using elements
in Σ in causal laws, state constraints and executability conditions such as:

move(R,X, Y ) causes loc(R,X, Y ) (4a)
dribble(R,X, Y ) causes ball_loc(X,Y ) (4b)
¬has_ball(A1) if has_ball(A2), A1 ̸= A2 (4c)
impossible shoot(R) if far_from_goal(R) (4d)
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where Statements 4(a-b) are causal laws that imply that moving and dribbling
change the ad hoc agent’s and ball’s location (respectively) to the desired loca-
tion. Statement 4(c) is a state constraint that implies that only one agent can
control the ball at any time. Statement 4(d) is an executability condition that
prevents the consideration of a shooting action (during planning) if the ad hoc
agent is far from the goal. Finally, the historyHc is a record of observations of flu-
ents, i.e., obs(fluent, boolean, step), and action executions, i.e., hpd(action, step)
at specific time steps. It also includes initial state defaults, i.e., statements that
are initially believed to be true in all but a few exceptional circumstances.

To enable an ad hoc agent to reason with prior knowledge, the domain
description in ALd is automatically translated to program Π(Dc,Hc) in CR-
Prolog [2], an extension of ASP that supports consistency restoring (CR) rules.
ASP is a declarative programming paradigm that is based on stable model
semantics and represents constructs difficult to express in classical logic for-
malisms. It encodes concepts such as default negation and epistemic disjunction,
i.e., unlike “¬a” that states a is believed to be false, “not a” only implies a is
not believed to be true, and unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is
not tautologous. Each literal is true, false, or “unknown”, and the agent only be-
lieves that which it is forced to believe. In particular, it supports non-monotonic
reasoning, i.e., the ability to revise previously held conclusions, which is essen-
tial in AHT domains and not supported by classical first order logic. Π(Dc,Hc)
also includes inertia axioms, reality check axioms, closed world assumptions for
defined fluents and actions, and helper axioms, e.g., to define goals and drive
planning and diagnosis. All reasoning tasks can then be reduced to computing
answer sets of Π. Each answer set is a collection of ground literals describing a
possible model of the world.

The ad hoc agent can prioritize different objectives at different time steps.
For example, the statements:

achieve_state(I)← holds(scored_goal, I). (5)
achieve_state(I)← holds(loc(ad_hoc_agent,X, Y ), I).

direct the ad hoc agent to reach a state where it has scored a goal, or to move to
a better position to receive the ball. The former objective is relevant when the
agent has control of the ball while the latter objective is more suitable when the
ad hoc agent does not control the ball. The I in the statements above encodes a
particular time step. A suitable objective for the ad hoc agent is automatically
selected and included at run-time based on the current state and the priority of
the objectives, and the cost is minimized when computing a plan of actions for
a given objective:

total(S)← S = sum{C,A : occurs(A, I), cost(A,C)}.
#minimize{S@p, S : total(S)}.

which will encourage the ad hoc agent to select actions that will minimize the
total cost when computing action sequences to achieve a particular objective. We
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Table 1: Attributes considered for models of other agents’ behavior in FA domain.
Description of attribute Number
x, y position of agent 12
distance from agent to center of field 6
agents’ polar angle with center of field 6
orientation of the agent 6
distance from agent to fort 6
distance to nearest attacker from fort 1
number of attackers not alive 1
previous action of the agent 1

use the SPARC system [1] to solve CR-Prolog programs; example programs are
in our open source repository [12]. For computational efficiency, our programs
build on prior work in our group to represent and reason with knowledge at two
formally-coupled resolutions—please see [26] for details.

3.2 Agent Models and Model Selection

In addition to prior domain knowledge, the ad hoc agent reasons with models
that predict the action choices of teammates and opponents. Recall that these
models need to be learned and revised rapidly from limited examples to provide
sufficient accuracy. Instead of using many (e.g., several million) examples under
different conditions, which is difficult to obtain in practical domains, we focused
on the choice of attributes and used simple hand-crafted policies (e.g., spread and
shoot in FA, pass when possible in HFO) to collect limited (e.g., 10K) training
examples. Table 1 lists the attributes used for predictive models in FA domain,
and Table 2 lists the attributes for HFO domain.

Similar to our recent work [11], the predictive models were learned using the
Ecological Rationality (ER) approach, which draws on insights from human cog-
nition and builds on Herb Simon’s definition of Bounded Rationality [15] and an
algorithmic model of heuristics [16]. Unlike the focus on optimal search in state
of the art AI methods, ER focuses on decision making under true uncertainty
(e.g., open worlds), characterizes behavior as a function of internal (cognitive)
processes and environment, and focuses on satisficing based on differences be-
tween observations and predictions of simple models. Also, heuristic methods
(e.g., one-reason, lexicographic) are viewed as a strategy to ignore part of the
information in order to make decisions more quickly, frugally, and/or accurately
than complex methods, experimentally identifying the method that best lever-
ages domain structure. This approach has led to good performance in many
practical applications [14]. In our case, behavior prediction models for team-
mates and opponents (in FA, HFO) were based on an ensemble of “fast and
frugal" (FF) decision trees that can be learned and revised at run-time; each
tree provides a binary class label and the number of leaves is limited by the
number of attributes considered to build the model [18].
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Table 2: Attributes for models of teammates and opponents in HFO domain.
Description of attribute Number
x position of agent 4
y position of agent 4
goal opening angle 2
proximity to the nearest opponent 2
x position of the ball 1
y position of the ball 1

Description of attribute Number
x position of agent 4
y position of agent 4
x position of the ball 1
y position of the ball 1

Algorithm 1: Model Selection
Input: A: other agents;M: subset of behaviour models; {ar}: actual

action choices of agents, {ap}: action predictions from behaviour
models

1 for i = 0 to A do
2 for m = 0 to M do
3 if ap ̸= ar then
4 lr, or ← real_location_orientation(ar)
5 lp, op ← pred_location_orientation(ap)
6 penalty ← abs(lr − lp) + abs(or − op)/10

7 end
8 scores = scores - penalty
9 end

10 update_model_scores(M, scores)
11 end

The ad hoc agent’s teammates or opponents may include different types of
agents, and their behavior may change over time. Unlike our prior work, we
enabled the ad hoc agent to automatically identify, reason about, and respond to
such behavior changes by revising models, switching between models, or learn-
ing new models. Existing models are revised by changing the parameters of FF
trees. An instance of our model selection approach is summarized in Algorithm 1
in the context of models predicting the pose (i.e., position and orientation) of
agents. Specifically, the ad hoc agent periodically compares the predictions of
the existing models with the actual (i.e., observed) action choices of each agent
(teammate, opponent) over a sliding window of information about the domain
state and the agents’ action choices. Also, the ad hoc agent has a graded strategy
for computing the error, e.g. small differences in orientation are penalized less
than large differences in position (Lines 4-6, Algorithm 1). An existing model is
used (and revised) or a new one is learned based on the degree of match between
observed and predicted action choices (Line 10, Algorithm 1).



10 Hasra Dodampegama, Mohan Sridharan

3.3 Partial Observability and Communication

In practical multiagent AHT domains, any single agent cannot observe the entire
domain. At the same time, communication is often a scarce resource. In order to
explore the interplay between partial observability and communication between
agents, we modified the original domains (FA, HFO). Specifically, in the FA
domain, we introduced a “forest" region where attackers can hide from the view
of the two guards (other than ad hoc agent), and secretly approach the fort—see
Figure 1b. The ad hoc agent has visibility of the forest region; it can decide when
to communicate with its teammates when needed, e.g., when: (a) one or more
attackers are hidden in the forest; and (b) one of the other guards is closer to the
hidden attacker(s) than the ad hoc agent. To enable an ad hoc agent using our
architecture to handle partial observability, we revised Π(Dc,Hc) to introduce
a communication action and related axioms such as:

holds(shoots(G,AA), I + 1)← occurs(communicate(AHA,G,AA), I) (6a)
holds(in_forest(AA), I)← holds(agent_loc(AA,X, Y ), I), forest(X,Y ),

not holds(shot(AA), I) (6b)
¬occurs(comms(AHA,G,AA), I)← not holds(in_range(G,AA), I). (6c)

where Statement 6(c) encodes that communication is used only when a hidden
attacker is within range of a teammate; Statement 6(b) defines when an attacker
is hidden in the forest; and Statement 6(a) describes the ad hoc agent’s belief that
a teammate receiving information about a hidden attacker will shoot it. Also,
if there are multiple guards satisfying the encoded conditions, the ad hoc agent
may only communicate with the guard closest to the hidden attacker(s); the ad
hoc agent could also broadcast this information to all teammates. Note that any
guard receiving the information may still choose to ignore the information.

In the HFO domain, we represent partial observability using the builtin abil-
ity to modulate the noise in an agent’s perception and actions. Specifically, each
agent’s perception is limited to a viewing cone, i.e., the agent is only able to sense
objects (i.e., agents, ball) within this cone and objects outside this cone are not
visible. Unlike the FA domain, given the use of builtin functions to define partial
observability, no additional communication action was implemented in the HFO
domain. We only added helper axioms to ensure that the ad hoc agent only con-
sidered the visible objects for making decisions about the actions it executed at
specific time steps. Unlike the FA domain, no additional communication action
was implemented because it was not needed.

4 Experimental setup and results

We experimentally evaluated the following hypotheses about our architecture’s
capabilities in the benchmark simulation domains:

H1: Our architecture’s performance is comparable or better than state of the art
baselines in simple and complex scenarios while using much fewer training
samples;
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H2: Our architecture enables adaptation to unforeseen changes in the number
and type of agents (teammates and opponents); and

H3: Our architecture supports adaptation to partial observability with limited
communication capabilities.

We evaluated the H1 and H2 in both FA domain and HFO domain under full
observability. For H3, we considered partial observability in both FA and HFO
domains, and explored limited communication in the FA domain. Each game of
the FA domain consisted of three guards and three attackers, with our ad hoc
agent replacing one of the guards. In HFO domain, each game consisted of two
offense and two defense players (including one goalkeeper) in the limited version;
and four offense players and five defensive agents (including one goalkeeper) in
the full version. Our ad hoc agent replaced one of the offense agents in each game
of the HFO domain. In the FA domain, the key performance measure was the
win percentage of the guards team. In the HFO domain, the key performance
measure was the fraction of games that ended with the offense team scoring a
goal. In both domains, we also measured the accuracy of the predictive models.
Further details of the experiments and baselines are provided below.

4.1 Experimental Setup

In the FA domain, we used two sets of policies for the agents other than our
ad hoc agent: hand-crafted policies and built-in policies. Hand-crafted policies
were constructed as simple strategies that produce basic behaviour of agents in
the FA domain. Built-in policies were provided with the domain; they are based
on graph neural networks trained using a large dataset of examples. We briefly
describe these policies below.

Hand-Crafted Policies:

– Policy1: guards stay close to the fort and try to shoot the attackers, attack-
ers spread and approach fort;

– Policy2: both guards and attackers spread and shoot their opponents.

Built-in Policies:

– Policy220: guards place themselves in front of the fort and shoot continu-
ously; attackers try to approach the fort.

– Policy650: guards try to block the fort; attackers try to sneak in from all
sides.

– Policy1240: guards spread and shoot the attackers; attackers sneak from
all sides.

– Policy1600: guards spread and move from the fort if needed; some attack-
ers approach and shoot at the guards to divert their attention, while other
attackers wait outside the guards’ shooting range for the right moment to
sneak in.
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We evaluated the ad hoc agent in two experiments: Exp1, in which agents other
than the ad hoc agent followed the hand-crafted policies; and Exp2, in which
other agents followed the built-in policies. To explore the ability to learn from
limited examples, we created basic behavior models in the form of FF trees from
just 10000 state and action observations obtained by running the hand-crafted
policies in the FA domain. Our ad hoc agent did not receive any prior experience
or models of the built-in policies.

Our previous work documented the accuracy of static behavior models and
the performance of a proof of concept AHT architecture in the FA domain [11].
So, in this paper, we focused on evaluating the ability to revise the predictive
models and adapt to partial observability. For evaluating the model selection
algorithm, we used a team of agents based on a mix of policies described earlier
(under Exp1 and Exp2); specifically, agents other than our ad hoc agent ran-
domly chose a policy from the mix of available policies. The baselines for this
experiment were:

– Base1: other agents followed a mix of hand-crafted policies; ad hoc agent
did not revise behavior models or use the model selection algorithm.

– Base2: other agents followed a mix of hand-crafted policies; ad hoc agent
used a model selection algorithm without a graded strategy to compare pre-
dicted and actual actions (binary comparison instead of Line 6 in Algo-
rithm 1).

– Base3: other agents followed a mix of builtin policies; ad hoc agent did not
revise models or use the model selection algorithm.

– Base4: other agents followed a mix of built-in policies; ad hoc agent used the
model selection algorithm without a graded strategy to compare predicted
and actual actions (binary comparison instead of Line 6 in Algorithm 1).

The baselines for evaluating partial observability and communication were:

– Base5: in Exp1, other agents followed hand-crafted policies and ad hoc
agent did not use any communication actions.

– Base6: in Exp2, other agents followed built-in policies and the ad hoc agent
did not use any communication actions.

Each experiment consisted of 150 episodes of the FA game.

In the HFO domain, we used six external agent teams from 2013 RoboCup
simulation competition to create the ad hoc agent’s teammates and opponents.
Five teams were used to create offense agents: helios, gliders, cyrus, axiom and
aut ; agents of the defense team were based on agent2d team. Similar to initial
phase in FA domain, we deployed the existing agent teams in the HFO domain
and collected state observations. Since the actions of other agents are not di-
rectly observable, the actions in these training samples were computed from the
observed state transitions. To evaluate the ability to learn from limited data,
we only used data from 300 episodes for each type of agent to create the corre-
sponding basic tree models that were then used by the ad hoc agent to predict
the behavior of other agents in its reasoning.
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We evaluated our architecture’s performance in HFO domain with each builtin
external team, i.e., all offense agents other than the ad hoc agent were based on
one external team at a time. In Exp3, we measured performance in the limited
version of the game, i.e., two offense players (including ad hoc agent) against
two defense agents (including goalkeeper). In Exp4, we measured performance
in the full version of the game, i.e., four offense players (including the ad hoc
agent) played against five defense agents (including the goal keeper). In Exp5
and Exp6, we conducted experiments to evaluate performance under partial
observability in the limited and full versions of the HFO domain (respectively).
We evaluate our ad hoc agent using 1000 episodes each of the limited version
and full version with the external agent types selected randomly; the same setup
was used for experiments with full observability and partial observability. As the
baselines for our experiments, we used recent (state of the art) AHT methods:
PPAS [22], and PLASTIC [6]. These methods used the same external agent types
for comparison, allowing us to compare our results with those in their papers.

Together, these experiments were used to evaluate the three hypotheses (H1,
H2, and H3). All claims are statistically significant unless stated otherwise.

4.2 Experiment Results

We begin with the results of experiments in the FA domain. First, Table 3 sum-
marizes the results of using our model selection algorithm in Exp1. When the
other agents followed the hand-crafted policies and the model selection mecha-
nism was not used by the ad hoc agent (Base1), the team of guards had the
lowest winning percentage. When the ad hoc agent used the model selection al-
gorithm without a graded strategy for comparing predicted and actual actions
(Base2), the performance of the team of guards improves. When the ad hoc
agent used our model selection method (Algorithm 1), the winning percentage
of the team of guards is substantially higher. These results demonstrated that
the adaptive selection of behavior models in our architecture (KAT) improved
the performance of the team with the ad hoc agent.

Next, the results of Exp2 are summarized in Table 4. We observed that the
ad hoc agent was able to adapt to unforeseen agents (teammates and opponents)
that were using the builtin policies (of FA domain) based on online revision of
the behavior models (i.e., the FF trees) learned from the hand-crafted policies
and the model selection algorithm. Our approach provided the best performance
compared with not using any model adaptation or selection (Base3), and with
using model selection without the graded strategy (Base4). These results and
the results from the Table 3 support hypotheses H1 and H2.

The results from Exp1 under partial observability, with and without commu-
nication (Base5) strategies, are summarized in Table 5. Recall that other agents
used the hand-crafted policies of the FA domain in this experiment. When the
communication actions were enabled for the ad hoc (guard) agent, the winning
percentage of the team of guards was substantially higher than the winning
percentage of the guards that did not have the opportunity to use the communi-
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Table 3: Wins (%) for guards with
hand-crafted policies (Exp1). Model
adaptation improves performance.
Experiment Win %
Without model selection (Base1) 63
When using direct comparison
(Base2)

68

With model selection algorithm
(KAT)

73

Table 4: Wins (%) for guards with
built-in policies (Exp2). Model adap-
tation improves performance.
Experiment Win %
Without model selection (Base3) 47
When using direct comparison
(Base4)

45

With model selection algorithm
(KAT)

55

Table 5: Wins (%) for guards with
hand-crafted policies (Exp1). Com-
munication addresses partial observ-
ability.
Policy With

Comm. (%)
Without
Comm.
(%,Base5)

Policy1 73 58
Policy2 19 8

Table 6: Wins (%) for team of guards
built-in policies (Exp2). Communica-
tion addresses partial observability.
Policy With

Comm. (%)
Without
Comm.
(%,Base6)

Policy220 79 85
Policy650 42 41
Policy1240 46 43
Policy1600 18 17

cation actions. Policy2 is a particularly challenging scenario (both guards and
attackers shoot), which justifies the lower winning percentage.

Next, the results from Exp2 under partial observability, with and without
communication (Base6) strategies, are summarized in Table 6. Recall that the
other agents used the builtin policies of the FA domain. We observed that the
winning percentage of the team of guards when following the policies 650, 1240,
and 1600 was comparable or higher when the communication actions are en-
abled compared with the absence of these actions (Base6). With Policy 220,
we observed that the performance was slightly worse with the communication
actions. However, recall that unlike the other policies, Policy 220 results in the
guards spreading themselves in-front of the fort and shooting continuously. As
a result, partial observability and communication strategies did not contribute
significantly to the outcome. These results support hypothesis H3.

We next describe the results from the HFO domain. Recall that the behavior
models were learned for the agents other than the ad hoc agent using data
from 300 episodes (for each external agent type). This is much smaller than
the number of training samples (often a few million) used by state of the art
data-driven methods that do not reason with domain knowledge. The prediction
accuracy of the learned behavior models created for the limited version (Exp3)
and full version (Exp4) of the HFO domain are summarized in Tables 7 and 8
respectively. We observed that the prediction accuracy varies over a range for
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Table 7: Prediction accuracy of the
learned agent behaviour models in lim-
ited (2v2) version of the HFO domain
(Exp3).

Agent Type Accuracy (%)
Helios 78.2
Gliders 83.2
Cyrus 69.5
Aut 72.4
Axiom 76.2
Agent2D 79.8

Table 8: Prediction accuracy of the
learned agent behaviour models in
full (4v5) version of the HFO domain
(Exp4).

Agent Type Accuracy (%)
Helios 86.0
Gliders 66.4
Cyrus 77.6
Aut 67.7
Axiom 73.6
Agent2D 71.9

Table 9: Fraction of goals scored by the offense team in HFO domain in the
limited version(2v2) and full version(4v5).

Version KAT (%) PPAS (%) PLASTIC (%)
Limited (2v2) 79 80 80
Full (4v5) 30 20 20

the different external agent types. Although the accuracy values are not very
high, the models can be learned and revised rapidly (during run-time).

The results of Exp3 and Exp4, i.e., evaluating our architecture (KAT) com-
pared with the state of the art baselines for the HFO domain (PPAS, PLASTIC),
are summarized in Table 9. Recall that these data-driven baselines are based on
millions of training examples and without any knowledge-based reasoning. The
fraction of goals scored (and games won) by the team of offense agents includ-
ing our ad hoc agent is comparable to the goals scored by the baselines for the
limited version, and substantially better than the baselines for the full version.
These results strongly support hypotheses H1 and H2.

Table 10: Fraction of goals scored by the offense team in HFO domain in the
limited version (2v2) and full version (4v5) under partial observability.

Version KAT (%) Original Team (%)
Limited (2v2) 70.5 76.6
Full (4v5) 18 20.5

Finally, the results of evaluating KAT under partial observability (in HFO
domain) are summarized in Table 10 compared with teams of external agent
types without any ad hoc agent. Although the numbers indicate that perfor-
mance with our architecture is slightly lower than without any ad hoc agents,
the difference is not significant and due to noise (e.g., in perceived angle to
the goal). Also note that this is a challenging multiagent collaboration domain,
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and the ability to provide performance comparable with teams whose training
datasets are orders of magnitude larger strongly supports H3. Due to space
constraints, additional video results, including that of different number of team
members, are in our open-source repository [12].

5 Conclusions

Ad hoc teamwork (AHT) is a fundamental problem in the coordination of multi-
agent teams. This paper described an AHT architecture (KAT) that embedded
the principles of refinement and ecological rationality to leverage the complemen-
tary strengths of knowledge-based reasoning and data-driven learning methods.
The architecture supports non-monotonic logical reasoning with commonsense
domain knowledge and simple predictive models of other agents’ behavior that
are learned from limited training examples using heuristic methods. We ex-
perimentally evaluated our architecture in benchmark simulated domains and
demonstrated that our architecture’s performance is comparable or better than
state of the art data-driven baselines. We also demonstrated the ability to adapt
learned behavior models and to operate under partial observability and limited
communication conditions.

Our architecture provides multiple directions for further research. In par-
ticular, we will further explore the interplay between representation, reasoning,
and learning for AHT in other (more) complex domains and on physical robots.
We will also investigate use of different communication strategies and the intro-
duction of multiple ad hoc agents (equipped with our architecture) in a team.
Furthermore, we will explore the use of the learned behavior models to augment
or revise the relevant knowledge used for reasoning.
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