
Generalising Axelrod’s Metanorms Game through
the use of explicit domain-specific norms

Abira Sengupta1, Stephen Cranefield1, and Jeremy Pitt2

1 University of Otago, Dunedin, New Zealand
2 Imperial College London

abira.sengupta@postgrad.otago.ac.nz, stephen.cranefield@otago.ac.nz,
j.pitt@imperial.ac.uk

Abstract. Achieving social order in societies of self-interested au-
tonomous agents is a difficult problem due to lack of trust in the actions
of others and the temptation to seek rewards at the expense of others. In
human society, social norms play a strong role in fostering cooperative
behaviour—as long as the value of cooperation and the cost of defection
are understood by a large proportion of society. Prior work has shown
the importance of both norms and metanorms (requiring punishment of
defection) to produce and maintain norm-compliant behaviour in a so-
ciety, e.g. as in Axelrod’s approach of learning of individual behavioural
characteristics of boldness and vengefulness. However, much of this work
(including Axelrod’s) uses simplified simulation scenarios in which norms
are implicit in the code or are represented as simple bit strings, which
limits the practical application of these methods for agents that interact
across a range of real-world scenarios with complex norms. This work
presents a generalisation of Axelrod’s approach in which norms are ex-
plicitly represented and agents can choose their actions after performing
what-if reasoning using a version of the event calculus that tracks the
creation, fulfilment and violation of expectations. This approach allows
agents to continually learn and apply their boldness and vengefulness
parameters across multiple scenarios with differing norms. The approach
is illustrated using Axelrod’s scenario as well as a social dilemma from
the behavioural game theory literature.

Keywords: Norms, Metanorms Game, Expectation Event Calculus

1 INTRODUCTION

The conflict between social benefit and an individual’s self-interest is a central
challenge in all social relationships as individuals may put their own interests
ahead of those of the society as a whole, often leading to a suboptimal outcome
for all—a situation known as a social dilemma.

Understanding how societies can solve this conflict and achieve cooperation to-
ward the collective good is essential. In a fishing scenario, for example, it is
profitable for a fisherman to catch as many fish as possible, but if everyone is
selfishly doing the same thing, the fishery will eventually run out of fish.

2 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

The question of why people often do cooperate with others remains, despite the
fact that individuals may benefit more from defecting than from cooperating.
The classical game theory literature from the last few decades models social
dilemmas using payoff matrices or trees and solution concepts such as the Nash
equilibrium, while making the assumption that all agents are perfectly rational
and well-informed. However, this becomes intractable to reason about for a large
number of agents

Human society suggests that cooperation can occur due to internal and social
motivations such as altruism, rational expectations (e.g. focal points), social
choice mechanisms (e.g. voting and bargaining) and social norms [9].

One body of prior work has focused on the role of norms, providing evidence
that social norms play an important role in fostering cooperation. Social norms
imply that members of society should comply with prescribed behaviour while
avoiding proscribed behaviours [15]. Bicchieri explains why agents adhere to so-
cial norms, claiming that a social norm emerges as a result of our expectations
of others and beliefs about their expectations [4]. Axelrod’s use of the norm and
metanorms game illustrates how agents adopt normative behaviour after learn-
ing individual parameters of boldness and vengefulness, where their boldness
represents their propensity to violate norms and vengefulness represents their
inclination to punish others for violating norms [3]. However, his evolutionary
study is based on an implicit representation of norms, which limits its practical
use for agents that interact in a variety of real-world situations with a range of
different norms.

In this work, we propose a generalisation of Axelrod’s method where norms are
represented explicitly and agents can choose their course of action after engaging
in what-if reasoning to compare the normative outcomes of alternative actions.
This approach is significant because it enables agents to continuously learn and
apply their boldness and vengefulness parameters across a variety of scenarios
with various norms.

The following is the structure of the paper. Axelrod’s norms and metanorms
games are discussed in Section 2. Section 3 emphasises the use of explicit norms
to encode Axelrod’s mechanism. Section 4 depicts the results of generalisation
of Axelrod’s norms and metanorms games, as well as the use of boldness and
vengefulness in other scenarios. The prior event calculus models of norms are
described in Section 5. Section 6 concludes the paper.

2 Background of Axelrod’s model

Axelrod states that “the extent to how often a given type of action is a norm
depends on just how often the action is taken and just how often someone is
punished for not taking it”. To understand how cooperation emerges from norms,
he developed a game in which players learn the parameters of boldness and

Generalising Axelrod’s Metanorms Game 3

vengefulness over generations of the population and can choose to deviate from
the norms and metanorms, receiving punishment for their violations [3].

2.1 The norms game

Axelrod’s norms game follows an evolutionary model in which successful agent
strategies propagate over generations. A strategy is a pair of values representing
the agent’s boldness and vengefulness. Each agent has the option of defecting
by violating a norm, and there is a chance of being observed by other agents
with the probability S, which is drawn individually for each agent from a uniform
distribution ranging . Each of the agents has two decisions to make (Figure 1(a)).

– Agents must decide whether to cooperate or defect based on their boldness
value (B). A defecting agent (when S < B) receives a Temptation payoff (T
= 3) while other agents receive a Hurt payoff (H = −1). If an agent decides
to cooperate, no one’s payoff will change as a result.

– If an agent observes others defecting (as determined by the S value), the
agent decides whether to punish those defectors based on its vengefulness
(V) (a probability of punishment). Punishers incur an enforcement cost (E
= −2) every time they punish (P = −9) a defector.

Axelrod simulated the norms game five times with 100 generations of 20 agents3.
Between generations, the utilities of each agent are used to evolve the population
of agents. Agents with scores greater than the average population score plus
one standard deviation are reproduced twice in a new generation. Agents with
a score less than the average population score minus one standard deviation
are not reproduced. Other agents are only reproduced once4. The initial values
of B and V are chosen at random from a uniform distribution of eight values
ranging from 0/7 to 7/7, with the numerator represented as a 3 bit string. During
reproduction each bit has a 1% chance of being flipped as a mutation.

2.2 The Metanorms game

Axelrod found that norms alone were not sufficient to sustain norm compli-
ance in society. He therefore introduced a metanorm to reinforce the practice of
punishing defectors. The metanorms game includes punishment for those agents
who do not punish defectors after observing them defect (Figure 1(b)). Meta-
punishers incur a meta-enforcement cost (E′ = −2) every time they metapunish
(P ′ = −9).

3 Axelrod used five runs of a hundred generations to simulate the norms and
metanorms games. However, we follow the recommendation of [7] and use 100 runs.

4 Axelrod does not state how he maintains a fixed population size after applying these
reproduction rules. We follow the approach of [7] involving random sampling when
the new population is too large, and random replication when the population is too
small.

4 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

For each agent i

S = Uniform (0,1)

i : Agent
 B : boldness

u : utility
Probability of

being seen

[]i.B <= S
 i.B > S []

i.u += T

Agent i defects
Agent i does not

defect

i.u : i's payoff
T : Temptation (3)

For each agent j i=/ V : vengefulness
u : utility

j.u += HPayoff of all others
H : Hurt (-1)

With probability S

Agent j does not see Agent iAgent j sees
Agent i

With probability
j.V

Agent j does not punish Agent i

Agent j punishes
Agent i

j.u += E(-2)
i.u += P (-9)

With probability S

For each agent
k i, j=/

Agent k does not see j
Agent k sees

Agent j

With probability
k.V

Agent k punishes j
Agent k does not

punish j

j.u += P' (-9)
k.u += E' (-2)

Norm game

Metanorm game

(a)

(b)

E : Enforcement cost
P : punishment cost

 E' : metapunishment enforcement cost
 P' : metapunishment cost

Fig. 1: (a) In Axelrod’s norms game, agent i will defect if bold enough; oth-
erwise, agent i will cooperate. Another agent j will punish i if the defection is
observed and agent j is vengeful enough. (b) The metanorms game adds the
possibility of metapunishment of agent j by another agent k. This occurs if j sees
a defection from i, j does not punish i, this lack of punishment is observed by k
and k is vengeful enough.

Generalising Axelrod’s Metanorms Game 5

3 ENCODING AXELROD’S MECHANISM USING
EXPLICIT NORMS

To generalise Axelrod’s mechanism, we provide an explicit representation of
norms and a mechanism that can compare alternative actions to determine which
will lead to a norm violation. The expectation event calculus (EEC) [5], a discrete
event calculus extension, provides this capability.

3.1 The Expectation Event Calculus

The event calculus (EC) consists of a set of predicates that are used to encode
information about the occurrence of events and dynamic properties of the state
of the world (known as fluents), as well as a set of axioms that interrelate these
predicates [14]. This logical language supports various types of reasoning. In
this work, we use it for temporal projection. This takes as input a narrative of
events that are known to occur (expressed using happensAt(E, T), where E is
an event and T is a time point) and a domain-specific set of clauses defining
the conditions under which events will initiate and terminate fluents (expressed
using the predicates initiates(E,F, T) and terminates(E,F, T)). The EC axioms
are then used to infer what fluents hold at each time point. By default, fluents
are assumed to have inertia, i. e. they hold until explicitly terminated by an
event.

The EC, in general, assumes that time is dense, and time points are ordered using
explicit ‘<’ constraints. In this work, we use the discrete event calculus (DEC),
which assumes that time points are discrete and identified by integers [11].

Event calculus axioms

Formula progression of expectations
(linear temporal logic formulae)

Creation of expectation fulfilment and
violation events

initiates and
terminates
formulae

Action theory
(effects of
actions)

Initially and
HapppensAtNarrative

formulae

Narrative of events

label formulae

State labels

HoldsAt formulae

Complete
state

information

Fig. 2: Overview of reasoning in the expectation event calculus (EEC)
[5]

The expectation event calculus (EEC) [5] is an extension of the DEC that in-
cludes the concepts of expectation, fulfilment, and violation. Expectations are
constraints on the future, expressed in a form of linear temporal logic, that the

6 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

agent wishes to monitor. Expectations are free from inertia and instead are auto-
matically progressed from one state to the next, which means they are partially
evaluated and re-expressed in terms of the next time point. During progression,
if they evaluate to true or false, a fulfilment or violation is generated.

Figure 2 illustrates temporal projection in the EEC. In addition to the standard
features of the DEC, there are two special kinds of fluents: exp_rule and exp. A
conditional rule to create expectations is expressed by an exp_rule(Cond ,Exp)
fluent. Here, Cond is a condition on the past and/or present, while Exp represents
the future expectation. Exp will be expected if Cond holds, in which case an
exp(Exp) fluent is created. In our implementation of the EEC, the condition can
test for fluents holding, the occurrence of events (expressed using happ(E)), the
presence of a symbolic label L in a state (using the expression @L). Complex
expressions involving conjunctions and linear temporal logic operators such as
next, eventually, always and never can aso be used. Labels are associated with
time points using label(L,T) declarations, and are not required to be unique.
To distinguish between basic events in the narrative and the inferred fulfilment
and violation events, we use the predicate happensAtNarrative to declare the
narrative events.

In contrast to the earlier approach of Cranefield [5], we represent fulfilments and
violations as events rather than fluents, denoted fulf (Cond ,Exp,T ,Res) and
viol(Cond ,Exp,T ,Res), where Cond and Exp are the condition and expectation
of an expectation rule that was triggered at time T to create the expectation,
and Res is the residual expectation (after being progressed zero or more times
since its creation) at the time of its fulfilment or violation5.

Our EEC implementation includes a what-if predicate that accepts two alter-
native event lists (E1 and E2) as arguments and infers the fluents that would
hold and the events (including violation and fulfilment events) that would occur
if each list of events were performed at the current time point. It returns the
fluents and events that would occur if the events in E1 are performed but not
those in E2, and those that would occur if the events in E2 occur but not those in
E1. This can be used as a basic form of look-ahead to assist an agent in deciding
between two actions, and especially in this work, to compare which (if any) of
two events will cause expectation violations.

3.2 Modelling Axelrod’s scenario with the EEC

We model time as a repeated cycle of steps and associate an EEC label with each
step. We use the event calculus initiates and terminates clauses to define the
effects of events that update an agent’s S value, give payoff to an agent as the
outcome of all agents’ cooperate or defect actions, and punish and metapunish
agents.

5 There is also an extended version of the exp fluent with these four arguments—the
version used in this paper has only the residual expectation as its argument.

Generalising Axelrod’s Metanorms Game 7

We use the EEC within a simulation platform [6] that integrates Repast Sim-
phony [12] with the EEC through queries to SWI Prolog. This includes an insti-
tutional model in which agents take on roles by asserting to the EEC narrative
that certain institution-related events have occurred such as joining an institu-
tion and adding a role6. Each role has an associated set of conditional rules. A
rule engine is run at the start of selected simulation steps where agents must
choose an action and these role-specific rules recommend the actions that are
relevant to the agent’s current role based on queries to the EEC, e.g. to check
the current step’s label and the fluents that currently hold. Then the agent can
run scenario-specific code to select one of the actions to perform7.

In contrast to Axelrod’s implicit representation of a norm and metanorm, our
explicit representation of a norm implies that three norms are required. In the
metanorms game, each action choice is governed by a norm. As there are three
choice-points, there are three norms that we model using exp_rule fluents.

First-Order Norm
initially(

exp_rule(member(A, society),
never(happ(defect(A))))).

This initially clause creates an expectation rule (exp_rule) express-
ing the first-order norm, which states that no defection should occur for
any agent who is a member of the society.

As the first-order norm described above is likely to be insufficient to motivate
selfish agents to follow the norm and cooperate with others, a second-order norm
is required.

Second-Order Norm
initially(

exp_rule(and([sawViolation(B,A,R,_),
pl(contains_term(defect(A), R))]),

happ(punish(B,A)))).
The second-order norm states that if the first-order norm is violated by
an agent, another agent who observes the violation should punish the
first-order norm defector. The pl term in the rule’s condition indicates
a goal to be evaluated using Prolog.

This second-order norm is triggered by a sawViolation fluent, which is created
when a violation of the first-order norm occurs and a defector is observed. The
following initiates clause creates this fluent.

6 https://github.com/maxant/rules
7 At present we assume there are no more than two relevant actions.

8 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

initiates(viol(_,_,_,ResidualExp),
sawViolation(B,A,ResidualExp,T),
T) :-

responsible(ResidualExp, A),
agent(B),
B \== A,
holdsAt(s(A,S), T),
random(R),
R < S.

The condition for this clause first determines which agent is responsible for the
unfulfilled expectation, then generates a possible observer different from the
violator and compares the agent’s S value with a random number to determine
whether or not the violation has been observed.

In our application, the violated expectation will include an instantiation of one
of the action terms defect(A), punish(A) or metapunish(A), and we can use
these to identify the responsible agent. We therefore define the responsible
predicate in Prolog as follows.

responsible(Expectation, A) :-
contains_term(defect(A), Expectation).

responsible(Expectation, A) :-
contains_term(punish(A,_), Expectation).

responsible(Expectation, A) :-
contains_term(metapunish(A,_), Expectation).

To encourage the punishment of second-order norm violators, a third-order norm,
is required.

Third-Order Norm
initially(

exp_rule(and([sawViolation(B,A,R,_),
pl(contains_term(punish(A,_), R))]),

happ(metapunish(B,A)))).
According to this EEC rule, observer agents must punish the violators
of the second-order norm when the violating agents fail to punish the
first-order norm defector after observing their defection.

Figure 3(a) and (b) illustrate the differences between our implementation of the
metanorms game with implicit and explicit norms. Figure 3(a) makes hard-coded
action choices, following Axelrod’s algorithm. However, in Figure 3(b), whenever
there is an action choice to be made, the two action choices are compared using
what-if reasoning that is informed by one of the three norms. If only one of
the choices will cause norm violation, the agent’s boldness parameter is used to
decide whether the violating option is chosen.

Generalising Axelrod’s Metanorms Game 9

Generate random S
value

Cooperate or
defect

Receive payoff

what-if(cooperate,
defect)

what-if(punish,
do_not_punish)

what-if(metapunish,
do_not_metapunish)

Every four cycles: regenerate population of
(B,V) values

N1: First-Order Norm
 N2: Second-Order Norm

 N3: Third-Order Norm

N1

Punish observed
defectors

EEC creates sawViolation
fluents.

Choose do_not_punish
(violating N2) with probability

1 - V
else punish N2

 Meta-punish
observed non-

punishers

EEC creates
sawViolation fluents.

Choose
do_not_metapunish
(violating N3) with
probability 1 - V
else metapunish

N3
Cooperate or

 defect

Receive
payoffPunish observed

defectors with
probability V

100 runs
10

0 r
uns

Cycle of events
for each agent

of the metanorms
game

Meta-punish observed
non-punishers with

probability V

Every four cycles: regenerate population of
(B,V) values

If B > S
cooperate

else
defect

Receive Payoff:
Sum of hurt from
violations, cost of

punishing & cost of
being punished

 S: Probability of the agent's defection being seen
 B: Boldness of the agent

 V: Vengefulness of the agent

10
0 r

un
s100 runs

Generate random S
value

White boxes are run for
each agent

Choose defect
(violating N1) if

B > S
else cooperate

Cycle of events
in the

generalisation of
the metanorms

game

Fig. 3: The distinction between implicit and explicit metanorms. It
depicts the cycle of events for Axelrod’s metanorms game (a) in its original form
with implicit norms, and (b) in our generalised form with explicit norms.

The box labelled Cooperate or defect indicates a time step in which an agent
must decide whether to cooperate or defect based on whether it has a high
boldness value (Figure 3(a)). In Figure 3(b), the first-order norm’s exp_rule
expressing the first-order will have been created in the initial time step and trig-
gered once for each agent, resulting in exp fluents stating that each agent should
never defect. Therefore, an agent can use the what-if mechanism to compare the
outcomes of the two alternative actions, cooperation or defection. If the agent’s
boldness value exceeds S, the agent will violate the first-order norm by defecting;
otherwise, the agent will cooperate.

The punishment step of the implicit norm simulation shows how agents pun-
ish each observed defector with a probability determined by the vengefulness
parameter (Figure 3(a)). Whereas the explicit norm representation simulation
cycle demonstrates second-order norm implementation within the punishment
step and how the agent can use the what-if mechanism to punish or do not
punish (Figure 3(b)).

If an agent violates with high boldness at the punishment step of the implicit
norm simulation, then an agent with high vengefulness metapunishes the viola-
tor (Figure 3(a)). However, in our work, we demonstrate how the EEC uses the
third-order norm at the meta-punishment step and how agents use the what-
if mechanism to determine whether or not to meta-punish the violators (Fig-
ure 3(b)).

10 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

Table 1: Roles and their possible actions
Step Role Possible actions
cooperate or defect temptation role cooperate or defect
punishment possible punisher role punish or do not punish
metapunishment possible punisher role meta-punish or do not meta-

punish

Figure 4 depicts in more detail our use of explicit norms with agents that are
aware of norm violations. We have three norms that represent rules in differ-
ent time steps, and they triggered and created expectations. The EEC initially
clauses generated the exp_rule fluents for the first-order norm (N1), second-order
norm (N2), and third-order norm (N3). Each agent has two roles: temptation role
and possible punisher role. Table 1 shows what actions an agent can take in the
simulation when assigned to a specific role for each step. The temptation role
specifies that an agent can choose to cooperate or defect at the cooperate or de-
fect step. While at the punishment step an agent with the possible punisher role
can choose to punish or do not punish, and an agent with the possible punisher
role can choose to metapunish or not to metapunish at the metapunishment
step. At the initial time step of the simulation, both roles (temptation role and
possible punisher role) are activated for each agent.

The EEC what-if predicate is used to consider two options: cooperate or defect,
punish or do not punish, metapunish or do not metapunish (depending on the
current step in the simulation cycle), and determine whether one rule produces
a violation while the other does not. The non-violating option is then chosen (or
a random choice if there is no violation). If both options result in a violation,
the cost of each violation is calculated (using domain-specific knowledge) and
the less costly option is chosen. If the costs are the same, a random selection is
made.

At the simulation’s final step, regenerate_population successful agents are repli-
cated and mutated to form a new generation of the same size [7]. In this sim-
ulation, folded outlined arrows represent iteration: one for the three norms and
their corresponding expectations within one generation, and the other for 100
generations of simulation.

4 Results

A. Experiment 1: Generalisation of Axelrod’s metanorms game The
simulation of the experiment depicts what happens when agents violate the
second-order norm and are metapunished by vengeful agents adhering to the
third-order norm. Figure 5(a) shows a scatter plot representation demonstrating
that boldness is always low and vengefulness ranges from high to average. We use
twenty agents, 100 generations, and 100 runs to simulate Axelrod’s generalisation

Generalising Axelrod’s Metanorms Game 11

Strategy (Boldness, Vengefulness)

exp(never(happ(defect(agent 1))))

temptation role
(choose(cooperate, defect, B))

what-if

possible punisher
role

choose(punish, do_not_punish, 1 - V)
what-if

Step:
cooperate or defect

 possible punisher role
choose(meta-punish, do_not_meta-punish, 1 - V)
 what-if

Step:
punishment

Vs

Mutate

Selected agents

New Generation of agents
with

 constant size

Repeated
100 times

Repeated

Step:
meta punishment

Relevant_actions

exp(happ(punish(agent 1, agent 2)))

At Time = 2

At Time = 3

At Time = 4

N1:

N2:

N3:

N1

cooperate defect

Compliant Not compliant

Vs

do_not_punishpunish

Not compliantCompliant
N2

meta-punish do_not_meta-punish

Vs N3

Choose(Action1, Action2, ViolProb):

Calc. V1 = violations Action1 will cause
Calc. V2 = violations Action2 will cause

If V1 and V2 are empty:
 return a random choice

If V1 and V2 are both non-empty:
calc. viol. cost for V1 and V2

Return action with lowest viol. cost

Otherwise, return the compliant action

with probability 1 - V or the violating
action with probability V

Not compliantCompliant

Relevant_actions

Relevant_actions

exp(never(happ(defect(agent 3))))

exp(happ(punish(agent 3, agent 2)))

exp(happ(metapunish(agent 1, agent 3)))

.....
....

Step:
regenerate_population

First- Order Norm : N1

Second-Order Norm : N2

Third-Order Norm : N3

Fig. 4: The generalisation of Axelrod’s approach in which norms are ex-
plicitly represented and agents can choose their actions based on what-if reason-
ing using expectation event calculus, which tracks the creation, fulfilment, and
violation of expectations. Agents 1, 2, and 3 are expected to never defect under
the first-order norm. We can assume that agent 2 is a defector. Then, according
to the second-order norm, agents 1 and 3 are expected to punish agent 2. Then,
according to the third-order norm, if agent 1 notices that agent 3 did not punish
agent 2, agent 1 will punish agent 3.

12 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

Fig. 5: (a) Scatter plot of mean boldness along x-axis wise and mean vengeful-
ness along y-axis wise of generalisation of Axelrod’s study with all three norms.
(b) Vector plot representation of mean boldness and vengefulness.

of explicit norms. The scatter plots generated by the mean value of boldness and
vengefulness in each of 100 runs.

Figure 5(b) depicts the vector representation of the same data set8. Vectors show
how boldness and vengefulness change across generations in the population. The
results show that what-if reasoning with explicit norms causes the first-order
norm to be largely upheld in the society due to low boldness being maintained.

However, compared to Axelrod’s results with implicit norms, there remains some
moderately low vengefulness values. This may be explained by a limitation of
the rule engine we use: only a single predetermined string can be returned as
the result of a rule, e.g. “punish”. Thus, when the rule’s condition compares an
agent’s vengefulness with a random number, the outcome is either to punish
all or none of the observed violators. In contrast, in Axelrod’s algorithm, each
individual punishment is the result of a different randomise decision. Further
investigation is needed to determine whether this explains the ability for agents
with lower vengefulness to remain in the population.

B. Experiment 2: Using the boldness and vengefulness in another sce-
nario [10] introduced a scenario that we refer to as the plain-plateau scenario in
our previous work [13]. The scenario depicts a society in which people have the
option of living on a river plain with easy access to water, otherwise, they can
live on a plateau. Flooding is a risk for river-plain residents. When the govern-
ment has complete discretionary power, it is in the government’s best interests

8 Populations with similar average levels of boldness and vengefulness are grouped
together to create each vector. The end point of each arrow shows the average levels
of these features one generation later.

Generalising Axelrod’s Metanorms Game 13

to compensate citizens whose homes have been flooded by taxing citizens who
live on the plateau, creating a prisoner’s dilemma situation. In previous work,
we experimented with the use of social norm-based expectations to achieve co-
ordination where citizen agents are hard-coded to prefer actions that will result
in no violation.

Initial
expectation

exp_rule(member(A,citizens),
 never(location(A,plain))). exp(never(location(A,plain))).

exp_rule(and([happ(viol(never(location(A, plain)))), location(B, plateau)]), happ(punish(B,A))).

exp(happ(punish(B,A))).

Norm

Metanorm

Triggered

Triggered

Plain dweller role
choose(Stay plain, Move plateau)

what-if

 Move Plateau

Selected Action

Plateau dweller role
choose(Stay plateau, Move plain)

what-if

 Stay Plateau

Selected Action

No Violation

Possible punisher role
choose(Punish, Do_not_punish)

what-if

No punishment

Selected Action

punish Do_not_punish

Compliant Not Compliant

Plain dweller role
choose(Stay plain, Move plateau)

what-if

Plain-Plateau scenario:
 All Agents are generous,

select non-violation

Plateau dweller role
choose(Stay plateau, Move plain)

what-if

Strategy = (Boldness, Vengefulness)

Stay plainMove
Plateau

Compliant Not Compliant

Move Plain
Stay

plateau

Not Compliant Compliant

Selected Action

 Stay Plateau

Selected Action

 Stay Plain

Violation

Possible punisher role
choose(Punish, Do_not_punish)

what-if

punishDo_not_punish

Compliant Not Compliant
Fulfilment

Violator

Plain-Plateau scenario: with Boldness & Vengefulness strategy
 All Agents are not always generous,

can select violation or fulfilment

(a)

(b)

Avoid violation

e.g. if bold enough e.g. if not bold enough

e.g. if not Vengeful
 enough

Fig. 6: (a) The plain-plateau scenario in which agents are hard-coded to
always choose the non-violating actions. (b) The plain-plateau scenario as
an application of our generalised metanorms game.

Figure 6(a) illustrates this prior work. Each agent has either a plain dweller or a
plateau dweller role, and in each simulation cycle there are two choices: agents
can stay on the plateau or move to the plain. In this scenario, we assume there
exists a norm that no one should live in the plain and a metanorm stating that
plateau dwellers should punish those who live on the plain.

Figure 6(b) illustrates the application of our generalisation of the metanorms
game to this scenario9. We import boldness and vengefulness parameters from a
run of Experiment 1. This simulates an agent finding itself in a new scenario after
having already evolved its personality with respect to norms, and illustrates the
generality of our approach using explicit norms and what-if reasoning. In the
9 Currently, we do not include a level 3 norm for the plain-plateau scenario.

14 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

plain-dweller role, the EEC what-if predicate is used to consider two options:
move to the plateau or stay in the plain; similarly, in the plateau-dweller role, the
what-if mechanism is used to consider either move plain or stay plateau. When
agents with high boldness in the plain-dweller role choose to stay in the plain,
they violate the norm. When other vengeful agents observe violators, they punish
them, unless insufficient vengefulness causes them to violate the metanorm.

5 Prior event calculus models of norms

This section of the paper reviews some research on the use of event calculus in
autonomous agent reasoning to examine the effects of norms.

Alrawagfeh [1] suggests formalising prohibition and obligation norms using event
calculus and offers a method for BDI agents to reason about their behaviour at
runtime while taking into account the norms in effect at the time and previous
actions. Norms are represented by EC rules that initiate fluents with special
meanings. The introduced fluents represent punishments for breaking a prohi-
bition norm or failing to fulfil obligation norms, or the rewards for fulfilling
obligation norms. The normative reasoning strategy assists agents in selecting
the most profitable plan by temporarily asserting to the event calculus the ac-
tions that each plan would generate and considering the punishments and/or
rewards it would trigger.

In Alrawagfeh’s work, norms cannot be changed dynamically without changing
the event calculus rule base, because they are defined by EC initiates clauses.
In contrast, in our approach, EC rules can be instantiated automatically from
exp_rule fluents, which can be changed dynamically by events.

Alrawagfeh has no representation of active norms, violations or fulfilments: only
punishments and rewards. In our work, expectation creation, fulfilment, and
violation are represented as events, and the what-if predicate compares alter-
native events to track expectation creation, fulfilment, and violation. We do
not assume that rewards and/or punishments will always follow violations and
fulfilments; these could be defined by separate exp_rules or EC initiates clauses.

Hashmi et al. [8] propose a number of new EC predicates to allow them to
model different types of obligation that occur in legal norms. In particular, they
introduce a deontically holds at predicate that ensures an obligation enters into
force at the same time that the triggering event occurs. In contrast, our approach
does not necessitate the introduction of a new type of EC predicate in order to
initiate a deontic predicate. An exp_rule or an expectation can be created with
a standard initiates clause and an exp fluent is created by an exp_rule in the
state where the condition of the rule becomes true. However, the EEC includes
additional axioms to deal with the progression of expectations.

Alrawagfeh and Hashmi et al. both use standard EC, whereas we use discrete
EC because this work involves discrete time simulations.

Generalising Axelrod’s Metanorms Game 15

6 Conclusion and future work

In previous work, we used the EEC what-if mechanism for choosing actions in the
presence of expectations how agents adhere to norms and choose actions using
the what-if mechanism. However, we assumed that all agents are hard-coded to
avoid expectation-violating actions.

The current work builds on this previous work to remove this assumption, but
it also makes the following significant standalone contribution. It generalises
Axelrod’s study to use explicitly represented norms. This allows the metanorms
game to be used across multiple scenarios.

Applying our generalised version of Axelrod’s metanorms game to varying sce-
narios will require changing the mechanism for evolving boldness and venge-
fulness parameters. Strategy evolution through population regeneration is not
realistic for agents that continually evolve their boldness and vengefulness as
they move between different scenarios. Therefore, in future work we will inves-
tigate the use of a pairwise comparison approach where an agent may adopt
another agent’s strategy based on a comparison of their respective fitnesses, e.g.
by using the Fermi process [2].

16 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

References
1. Alrawagfeh, W.: Norm representation and reasoning: a formalization in event cal-

culus. In: International Conference on Principles and Practice of Multi-Agent Sys-
tems. pp. 5–20. Springer (2013)

2. Altrock, P.M., Traulsen, A.: Fixation times in evolutionary games under weak
selection. New Journal of Physics 11(1), 013012 (2009)

3. Axelrod, R.: An evolutionary approach to norms. American Political Science Re-
view 80(4), 1095–1111 (1986)

4. Bicchieri, C.: The grammar of society: The nature and dynamics of social norms.
Cambridge University Press (2005)

5. Cranefield, S.: Agents and expectations. In: International Workshop on Coordi-
nation, Organizations, Institutions, and Norms in Agent Systems. pp. 234–255.
Springer (2013)

6. Cranefield, S., Clark-Younger, H., Hay, G.: A collective action simulation platform.
In: Multi-Agent-Based Simulation XX: 20th International Workshop, MABS 2019,
Montreal, QC, Canada, May 13, 2019, Revised Selected Papers 20. pp. 69–80.
Springer (2020)

7. Galan, J.M., Izquierdo, L.R.: Appearances can be deceiving: Lessons learned re-
implementing Axelrod’s evolutionary approach to norms. Journal of Artificial So-
cieties and Social Simulation 8(3) (2005)

8. Hashmi, M., Governatori, G., Wynn, M.T.: Modeling obligations with event-
calculus. In: Rules on the Web. From Theory to Applications: 8th International
Symposium, RuleML 2014, Co-located with the 21st European Conference on Ar-
tificial Intelligence, ECAI 2014, Prague, Czech Republic, August 18-20, 2014. pp.
296–310. Springer (2014)

9. Holzinger, K.: The problems of collective action: A new approach. MPI Collective
Goods Preprint No. 2003/2, SSRN (2003), doi:10.2139/ssrn.399140

10. Klein, D.B.: The microfoundations of rules vs. discretion. Constitutional Political
Economy 1(3), 1–19 (1990)

11. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann (2006)
12. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,

Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Com-
plex Adaptive Systems Modeling 1(1), 3 (2013)

13. Sengupta, A., Cranefield, S., Pitt, J.: Solving social dilemmas by reasoning about
expectations. In: Coordination, Organizations, Institutions, Norms, and Ethics for
Governance of Multi-Agent Systems XIV. pp. 143–159. Springer (2022)

14. Shanahan, M.: The event calculus explained. In: Artificial Intelligence Today, pp.
409–430. Springer (1999)

15. Thøgersen, J.: Social norms and cooperation in real-life social dilemmas. Journal
of Economic Psychology 29(4), 458–472 (2008)

