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Abstract. Norms have been widely proposed as a way of coordinating and con-
trolling the activities of agents in a multi-agent system (MAS). A norm specifies
the behaviour an agent should follow in order to achieve the objective of the MAS.
However, designing norms to achieve a particular system objective can be diffi-
cult, particularly when there is no direct link between the language in which the
system objective is stated and the language in which the norms can be expressed.
In this paper, we consider the problem of synthesising a norm from traces of agent
behaviour, where each trace is labelled with whether the behaviour satisfies the
system objective. We show that the norm synthesis problem and several related
problems are NP-complete.

1 Introduction

There has been a considerable amount of work on using norms to coordinate the activ-
ities of agents in a multi-agent system (MAS) [11]. Norms can be viewed as standards
of behaviour which specify that certain states or sequences of actions in a MAS should
occur (obligations) or should not occur (prohibitions) in order for the objective of the
MAS to be realized [9]. We focus on conditional norms with deadlines which express
behavioral properties [35]. Conditional norms are triggered (detached) in certain states
of the MAS and have a temporal dimension specified by a deadline, which is also a
state property. The satisfaction or violation of a detached norm depends on whether
the behaviour of the agent brings about a specified state before a state in which the
deadline condition is true. Conditional norms are implemented in a MAS through en-
forcement. That is, violation of a norm results in either the behaviour being pre-empted
(regimented, [5]), or in the violating agent incurring a sanction, e.g., a fine. See, e.g.,
[14] for how to determine an appropriate level of sanction.

For many applications it is assumed that the MAS developer will design an appro-
priate norm to realise the system objective. However, this can be difficult, particularly
when the internals of the agents are unknown, e.g., in the case of open MAS [6], and
when there is no direct connection between the language in which the system objective
is stated and the language in which norms can be expressed. For example, one objective
of a traffic system may be to avoid traffic collisions, but ‘not colliding’ is not a prop-
erty under direct agent control, and prohibition of collisions cannot be stated as a norm.
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A poorly designed norm may fail to achieve the system objective, or have undesirable
side effects, e.g., the objective is achieved, but the autonomy of the agents is restricted
unnecessarily.

The increasing availability of large amounts of system behaviour data [1,23] intro-
duces the possibility of a new approach to the design of norms, namely the synthesis
of norms directly from data collected during the execution of the system. For example,
data may show that collisions always happen when an agent’s speed is very high, al-
lowing us to state a norm prohibiting agents from speeding too much. In this paper, we
consider the problem of synthesising norms from traces of agent behaviour, where each
trace is labelled with whether the behaviour satisfies the system objective.

The contributions of this paper are the following.

– We show that synthesising a norm (i.e., an obligation or a prohibition) that correctly
classifies the traces (i.e., the norm is violated on traces where the behaviour does not
satisfy the system objective, and is not violated on other traces) is an NP-complete
problem.

– We show that analogous complexity results (NP-completeness) also hold for the
problem of the synthesis of sets of norms.

– We also consider the problem of synthesizing a norm that is “close” to a target
norm. This problem is relevant where there is an existing norm that does not achieve
the system objective, but which is accepted, e.g., by human users of a system, and
we wish a minimal modification that does achieve the objective. We show that the
minimal norm revision problem is also NP-complete.

This paper is organized as follows. Section 2 provides the necessary formal back-
ground on conditional norms and on traces of agent behaviours. Section 3 discusses
the complexity of the problem of synthesising a single conditional norm. Section 4 dis-
cusses the complexity of synthesising a set of conditional norms. Section 5 discusses
the complexity of the minimal norm revision. Section 6 discusses related work and
Section 7 presents conclusions and future work.

2 Preliminaries

In this section we give formal definitions of the behaviour of agents in the MAS and of
conditional norms.

We assume a finite propositional language L that contains propositions correspond-
ing to properties of states of the MAS. A state of the MAS is a propositional assignment.
A conjunction of all literals (propositions or their negations) in a state s will be referred
to as a state description of s. For example, for L = {p, q, r}, a possible state description
is p ∧ ¬q ∧ r (a state where p is true, q is false, and r is true).

A propositional formula is a boolean combination of propositional variables. The
definition of a propositional formula φ being true in a state s (s |= φ) is the standard
classical one. We use > for a formula that is true in all states and ⊥ for the formula
which is false in all states.

A trace is a finite sequence of states. We use the notation ρ = (s1, . . . , sk) for a
trace consisting of states s1, . . . , sk. For example, a trace could be generated by the
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actions of all vehicles involved in a traffic accident. We denote the i-th state in a trace ρ
by ρ[i]. We assume that the behaviour exhibited by the agents in the MAS is represented
by a set of finite traces Γ . We denote by S(Γ ) or simply by S the set of states occurring
in traces in Γ . Each subset X of S(Γ ) is definable by a propositional formula φX (a
disjunction of state descriptions of states in X). Note that the size of φX is linear in
the size of X (the sum of sizes of state descriptions of states in X). For example, if
X = {s1, s2} where s1 = p ∧ q ∧ r and s2 = ¬p ∧ ¬q ∧ ¬r, the the description
of X is (p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r). Γ is partitioned into two sets ΓT (‘good’, or
positive, traces) and ΓF (‘bad’, or negative, traces). The partition is performed with
respect to the system objective, which typically does not correspond directly to the
properties expressible in L. We note that the assumption that each trace describing the
behavior of the agents can be labeled as either good or bad is realistic in several contexts
and for different kinds of MAS objectives. For example, instances of a process can be
deemed as compliant or non-compliant w.r.t. a model [24]; in the traffic domain, traces
can be labeled individually w.r.t. the expected travel time or emissions, or based on the
occurrence of a collision.

The problem we wish to solve is how to generate a conditional norm which is ex-
pressed using propositions from L, and that is obeyed on traces in ΓT and violated on
traces in ΓF .

Definition 1 (Conditional Norm). A conditional norm (over L) is a tuple (φC , Z(φZ),
φD), where φC , φZ and φD are propositional formulas over L, and Z ∈ {P,O} indi-
cates whether the norm is a prohibition (P ) or an obligation (O).

We refer to φC as the (detachment) condition of the norm, and φD as the deadline. φZ
characterizes a state that is prohibited (resp. obligated) to occur after a state where the
condition of the norm φC holds, and before a state where the deadline of the norm φD
holds. We define the conditions for violation of norms formally below.

Definition 2 (Violation of Prohibition). A conditional prohibition (φC , P (φP ), φD)
is violated on a trace (s1, s2, . . . , sm) if there are i, j with 1 ≤ i ≤ j ≤ m such that
φC is true at si, φP is true at sj , and there is no k with i < k < j such that φD is true
at sk.

In other words, a conditional prohibition is violated on a trace if the states in the
trace exhibit a pattern of the following type: a state where the norm is detached (orange
in Figure 1) is followed by a number of states (possibly none) where neither the pro-
hibition is violated nor the deadline is reached (the yellow states), after which there is
a state where the deadline is still not reached but the prohibition is violated (the blue
state). Note that the state where the prohibition is violated may be the same state where
the norm is detached (not shown in Figure 1, which considers the case where the three
types of states are distinct).

Definition 3 (Violation of Obligation). A conditional obligation (φC , O(φO), φD) is
violated on a trace (s1, s2, . . . , sm) if there are i, j with 1 ≤ i ≤ j ≤ m such that φC
is true at si, φD is true at sm, and there is no k with i ≤ k ≤ j such that φO is true at
sk.
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. . . φC ,¬φD,¬φP ¬φD,¬φP . . . ¬φD,¬φP ¬φD, φP . . .

Fig. 1: Example of violation of a prohibition

In other words, a conditional obligation is violated on a trace if the states in the trace
exhibit a pattern of the following type: a state where the norm is detached (light blue in
Figure 2) is followed by a number of states (possibly none) where neither the obligation
is satisfied nor the deadline is reached (the pink states), after which there is a state where
the obligation is still not satisfied but the deadline is reached (the gray state). Note that,
as in the case of conditional prohibitions, the state where the obligation is violated (the
gray state) may be the same state where the norm is detached (not shown in Figure 2,
which considers the case where the three types of states are distinct).

. . . φC ,¬φD,¬φO ¬φD,¬φO . . . ¬φD,¬φO φD,¬φO . . .

Fig. 2: Example of violation of an obligation

Note that the violation of a conditional prohibition or obligation does not distin-
guish between a single or multiple violations, i.e., a trace violates a norm if at least one
violation occurs.

A conditional norm is obeyed on a trace if it is not violated on that trace. Violation
conditions of conditional norms can be expressed in Linear Time Temporal Logic (LTL)
and evaluated on finite traces in linear time [4].

Example 1. Consider the following simple example. Let L = {p, q, r} be a language
where p means that a vehicle is on a particular stretch of a street, q means that it is a
large goods vehicle, and r means that its speed exceeds 15 mph. The p stretch is a steep
incline with a blind corner, and heavy vehicles sometimes crash into a barrier at the
bottom of the street. The system objective is that such crashes are avoided. An example
set of positive and negative traces is given below.

ΓT = { ρ1 = (s1 = p ∧ q ∧ ¬r, s1 = p ∧ q ∧ ¬r, s2 = ¬p ∧ q ∧ ¬r),
ρ2 = (s3 = ¬p ∧ ¬q ∧ ¬r, s4 = p ∧ ¬q ∧ r, s4 = p ∧ ¬q ∧ r),
ρ3 = (s5 = ¬p ∧ q ∧ r, s5 = ¬p ∧ q ∧ r) }

ΓF = { ρ4 = (s1 = p ∧ q ∧ ¬r, s6 = p ∧ q ∧ r, s2 = ¬p ∧ q ∧ ¬r),
ρ5 = (s1 = p ∧ q ∧ ¬r, s6 = p ∧ q ∧ r) }
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Intuitively, positive traces involve only slowly driving trucks when p is true, and arbi-
trary speeds otherwise. The following conditional prohibition is violated on all negative
traces: (p ∧ q, P (p ∧ q ∧ r),¬p). 4

3 Complexity of Norm Synthesis

Given a set of agent behaviour traces Γ partitioned into ΓT and ΓF , we wish to synthe-
size a norm that correctly classifies each trace (that is, the norm is violated on all traces
in ΓF , and is not violated on any trace in ΓT ). Clearly, this is not always possible; two
sets of traces may not be distinguishable by a single conditional norm (or even by a set
of conditional norms). For example:

ΓT = {(s1, s2, s3)}, ΓF = {(s1, s1, s2, s3)}

cannot be distinguished by a conditional norm.

3.1 Prohibition Synthesis

We first define formally the decision problem we call prohibition synthesis.

Definition 4. The prohibition synthesis problem is the following decision problem:

Instance A finite set of propositions L; a finite set of finite traces Γ partitioned into ΓT

and ΓF , each trace given as a sequence of state descriptions over L.
Question Are there three propositional formulas φC , φP , and φD over L such that

Neg every trace in ΓF violates (φC , P (φP ), φD)
Pos no trace in ΓT violates (φC , P (φP ), φD)

The correspondence between sets of states and formulas over L allows us to re-
state the prohibition synthesis problem as follows: given a set of positive traces ΓT and
negative traces ΓF , find three sets of states XC , XP , XD such that:

Neg For every trace ρ ∈ ΓF , there exists i and j with i ≤ j such that ρ[i] ∈ XC ,
ρ[j] ∈ XP , and there is no k with i < k < j such that ρ[k] ∈ XD.

Pos For every trace ρ ∈ ΓT , if for some i and j, i ≤ j, ρ[i] ∈ XC , ρ[j] ∈ XP , then
there exists k such that i < k < j and ρ[k] ∈ XD.

Theorem 1. The prohibition synthesis problem is NP-complete.

Proof. The prohibition synthesis problem is clearly in NP (a non-deterministic Turing
machine can guess the three sets and check in polynomial time that they satisfy the
conditions). To prove that it is NP-hard, we reduce 3SAT (satisfiability of a set of clauses
with 3 literals) to prohibition synthesis.

4 Clearly, alternative definitions of norms are also possible. For example, since trucks do not
cease being trucks while driving along the street, we can also state the prohibition as (p ∧
q, P (r),¬p), or we can prohibit a truck driving fast on p: (>, P (p ∧ q ∧ r),⊥).
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3SAT is an NP-complete problem. An instance of 3SAT is a set of clauses, where
each clause is a disjunction of at most 3 literals, for example, {(x1 ∨x2 ∨¬x3), (¬x1 ∨
¬x2 ∨ x4)}. The question is whether the set of clauses is satisfiable, that is, whether
there is an assignment of truth values 0 and 1 to the propositional variables that makes
all the clauses true; in other words, is there an assignment such that each clause contains
at least one true literal. In the example above, assigning 0 to x3 and 1 to x4, and, for
example, 0 to x1 and to x2, makes both clauses true.

To start the reduction from 3SAT to prohibition synthesis, suppose an instance of
3SAT is given; that is, we have a set of clauses C1, . . . , Cn over variables x1, . . . , xm.
We generate an instance of the prohibition synthesis problem such that it has a solution
if, and only if, C1, . . . , Cn are satisfiable (each clause contains at least one true literal).
We construct the corresponding instance of the prohibition synthesis problem as fol-
lows. The set of states in the prohibition synthesis problem consists of two states s and
t (s and t are a technical device; intuitively they serve as the detachment condition and
the violation of the prohibition), and for each variable xi, we need two states ui and
vi. When we ‘translate’ a clause into a trace, we insert ui into the trace if xi occurs
positively in the clause, and vi if it occurs negatively. Intuitively, ui in XD will be a
proxy for ‘xi should be assigned 1’, and vi in XD will be a proxy for ‘xi should be
assigned 0’. We give the rest of the construction below. Comments in square brackets
explain the intuition for each step in the construction.

The set of negative traces ΓF contains:

– a two state trace (s, t) [together with s, t 6∈ XC ∩ XP below, this forces s ∈ XC

and t ∈ XP ];
– for every variable xi in the input, a trace (s, vi, t, s, ui, t) [this ensures that either
vi or ui are not in XD].

The set of positive traces ΓT contains:

– a single state trace (s) [so s cannot be in XC ∩XP ];
– (t) [so t cannot be in XC ∩XP ];
– for every variable xi in the input: (s, vi, ui, t) [this means that either vi or ui are in
XD]; (vi); (ui); (vi, t); (ui, t); (s, vi); (s, ui);

– for every pair of variables xi, xj in the input: (vi, uj); (uj , vi) [this together with
preceding traces ensures that vi and ui are not in XC or XP ];

– for each clause C in the input over variables xj , xk, xl: (s, zj , zk, zl, t) where zi is
ui if xi occurs in C positively, and vi if it occurs negatively.

It is easy to see that the reduction from the 3SAT instance to the prohibition synthe-
sis instance is polynomial in the number m of variables (quadratic) and in the number
n of clauses (linear).

We claim that there exists an assignment f of truth values 0, 1 to x1, . . . , xm such
that all the clauses C1, . . . , Cn are true if, and only if, there is a solution to the prohibi-
tion synthesis problem above, where XC = {s}, XP = {t}, and for every i, ui ∈ XD

iff f(xi) = 1 and vi ∈ XD iff f(xi) = 0.
‘only if’ direction: Assume that an assignment f that makesC1, . . . , Cn true exists.

Let XC = {s} and XP = {t}. For every i, place ui in XD if f(xi) = 1 and vi ∈ Xd if
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f(xi) = 0. This produces a solution to the prohibition synthesis problem because: s, t
satisfies Neg; for every i, either ui or vi are not in XD, so s, vi, t, s, ui, t satisfies Neg.
Positive traces satisfy Pos: either s followed by t does not occur on a trace, or ui, vi
occur between s and t and one of them is in XD, or (from the clause encoding) one of
the literals in the clause is true, so for positive xi it means that ui is in XD and Pos is
satisfied, or for negative ¬xi it means that vi is in XD and again Pos is satisfied.

‘if’ direction: Assume there is a solution to the prohibition synthesis problem. It is
clear (see the comments in square brackets above) that it has to be of the form XC =
{s}, XP = {t} and XD containing some uis and vis. In particular, since (s, vi, ui, t)
is a positive trace, for every i either ui or vi must not be in XD. Set f(xi) to be 1 if
ui in XD and 0 otherwise. Then each clause C = {∼ xj ,∼ xk,∼ xl} (where ∼ xj
denotes xj if it occurs positively or ¬xj if it occurs negatively) is satisfied by f since
for every clause there will be one literal which is true. This is because (s, zj , zk, zl, t) is
a positive trace, and either for some positive literal xi, ui is inXD, or for some negative
literal ¬xi, vi is in XD, so ui is not in XD, so f(¬xi) = 1.

3.2 Obligation Synthesis

We now consider the obligation synthesis problem.

Definition 5. The obligation synthesis problem is the following decision problem:

Instance A finite set of propositions L, a finite set Γ of finite traces partitioned into ΓT

and ΓF , where each trace is given as a sequence of state descriptions.
Question Are there three propositional formulas φC , φO, and φD over L such that

Neg every trace in ΓF violates (φC , O(φO), φD)
Pos no trace in ΓT violates (φC , O(φO), φD)

Analogously to the prohibition synthesis problem, the obligation synthesis problem
can be equivalently restated in terms of states: are there three sets of statesXC ,XO and
XD such that:

Neg For every trace ρ ∈ ΓF , there exist i and j with i ≤ j such that ρ[i] ∈ XC ,
ρ[j] ∈ XD, and there is no k with i ≤ k ≤ j such that ρ[k] ∈ XO

Pos For every trace ρ ∈ ΓT , if for some i and j, i ≤ j, ρ[i] ∈ XC , ρ[j] ∈ XD, then
there exists k such that i ≤ k ≤ j and ρ[k] ∈ XO.

Theorem 2. The obligation synthesis problem is NP-complete.

Proof. The obligation synthesis problem is clearly in NP. To prove that it is NP-hard,
we again use a reduction from the 3SAT problem.

As before, consider a set of clauses C1, . . . , Cn over variables x1, . . . , xm, which is
an instance of 3SAT. We generate an instance of the obligation synthesis problem such
that it has a solution iff C1, . . . , Cn are satisfiable. The idea of the reduction is similar
to that for prohibitions. We use two auxiliary states s and t, intuitively to serve as the
detachment condition and the deadline, and make sure that neither of them is also the
obligation, but now instead of inserting a deadline between s and t in positive traces,
we insert an obligation. We want to make some subset of {vi : i ∈ [1, ...m]} ∪ {ui :
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i ∈ [1, ...m]} to be the obligation (XO), so that exactly one of vi, ui for each i is in
XO. Then ui ∈ XO can encode that xi is true, and vi ∈ XO that xi is false, and we
can make the encoding work by creating a positive trace corresponding to each clause
so that at least one of the literals in the clause should be true.

The set of negative traces contains:

– a 2 state trace (s, t) [this forces either s ∈ XC ∩XD ∩XO, t ∈ XD ∩XC ∩XO, or
s ∈ XC ∩XD∩XO, or t ∈ XC ∩XD∩XO. To rule out the latter two possibilities,
we require below that s and t on their own are positive traces.]

– for every variable xi in the input, a trace (s, vi, t, s, ui, t) [this ensures that either
vi or ui are not in XO, because there is one (s, .., t) sub-trace that does not contain
a state from XO].

The set of positive traces contains:

– a one state trace (s) [so s cannot be in XC ∩XD ∩XO]
– a one state trace (t) [so t cannot be in XC ∩XD ∩XO]
– for every variable xi in the input, a trace (s, vi, ui, t) [this ensures that either vi or
ui are in XO]

– for each clause C in the input over variables xj , xk, xl, a trace (s, zj , zk, zl, t)
where zi is ui if xi occurs in C positively, and vi if it occurs negatively.

The reduction is linear in the number of variables and clauses.
We claim that there exists an assignment f of 0, 1 to x1, . . . , xm satisfyingC1, . . . , Cn

if, and only if, there is a solution to the obligation synthesis problem above where
s ∈ XC , t ∈ XD, and for every i, ui ∈ XO iff f(xi) = 1 and vi ∈ XO iff f(xi) = 0.
The proof of this claim is analogous to that of Theorem 1.

Assume that an assignment f satisfying C1, . . . , Cn exists. Let XC = {s} and
XD = {t}. For every i, place ui in XO iff f(xi) = 1 and vi ∈ XO iff f(xi) = 0. It is
easy to check that this is a solution to the obligation synthesis problem.

Assume there is a solution to the obligation synthesis problem. It is clear (see the
comments in brackets above) that any solution should satisfy s ∈ XC ∩XD ∩XO and
t ∈ XD ∩XC ∩XO. Since (s, vi, t, s, ui, t) is a negative trace for every i, this means
that it contains an unsatisfied conditional obligation. This means that for every i, either
vi or ui is not in XO. Since (s, vi, ui, t) is a positive trace, then in any solution, for
every i, either ui or vi has to be in XO. Hence we can use the membership in XO to
produce a boolean valuation of variables xi (1 if ui ∈ XO, and 0 if vi ∈ XO). Since
for every clause C = {∼ xj ,∼ xk,∼ xl}, the trace (s, zj , zk, zl, t) (where zi is vi if
∼ xi = ¬xi, and ui if ∼ xi = xi) is a positive trace, at least one of zi is in XO. This
means that the valuation based on the membership in XO satisfies all the clauses (since
at least one literal in each clause will evaluate to 1).

4 Complexity of Synthesising a Set of Norms

In this section, we consider the problem of synthesising a set of norms. To motivate
the problem, we first give an example where classifying positive and negative traces
correctly requires more than one norm.
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Example 2. Let the language L be {p, q1, q2, r1, r2} where, for the sake of intuition, p
denotes a particular kind of customer who needs to be greeted in a particular way (r1)
before they pass the greeter (q1) and ¬p is all other customers who need to be greeted
in a different way (r2), before q2.

ΓT = { ρ1 = (s1 = p ∧ ¬q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2, s2 = p ∧ ¬q1 ∧ ¬q2 ∧ r1 ∧ ¬r2,
s3 = ¬p ∧ q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2, s4 = ¬p ∧ ¬q1 ∧ ¬q2 ∧ ¬r1 ∧ r2) }

ΓF = { ρ2 = (s1 = p ∧ ¬q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2),
ρ3 = (s3 = ¬p ∧ q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2) }

This example can only be solved by two norms, because a trace consisting only of
state s1 is a violation (ρ2), but s1 alone cannot be prohibited because the trace ρ1 =
(s1, s2, s3, s4) is in ΓT . So, the trace (s1) must be ruled out by an obligation: after s1,
there should be s2 or s3 or s4. From trace ρ4 in ΓF , (s3) is a violation, so s3 must
either be prohibited, or it must be ruled out by an obligation, that is, after s3, s4 should
happen. If s3 is prohibited, then ρ1 = (s1, s2, s3, s4) would be a violation, but it isn’t.
So after s3, s4 should happen. Therefore two obligations are required, for example,
(p,O(r1), q1) and (¬p,O(r2), q2).

Similarly, two or more prohibitions may be required if different things are prohibited in
different contexts.

If there is a set of norms separating ΓT and ΓF , then its size is trivially bounded by
the number of all different non-equivalent norms given the language L. Since L is finite,
there are 2×3×22|L|

possible conditional norms (there are 2|L| state descriptions, 22
|L|

possible formulas in disjunctive normal form that can be parts of the norm, 3 positions

on which they can occur, and 2 types of conditional norms). There are O(22
2|L|

sets
of non-equivalent norms. However, it is possible to produce a much better bound on
the maximal size of the set of norms correctly classifying ΓT and ΓF than a triple
exponential in |L|.

Theorem 3. If it is possible to correctly classify ΓT and ΓF by a set N of norms, then
this can be done by a set of norms of size at most |ΓF |.

Proof. First, observe that we do not need more than one norm to exclude each trace in
ΓF . So we need to have at most |ΓF | norms. Second, if a set N of norms is not violated
on any of ΓT traces, then no norm from N ′ ⊆ N is violated on a ΓT trace.

Definition 6. The multiple conditional norm synthesis problem is the following deci-
sion problem:

Instance A finite set of propositions L; an integer m; a finite set of finite traces Γ
partitioned into ΓT and ΓF , each trace given as a sequence of state descriptions
over L.

Question is there a set N of conditional prohibitions and obligations over L with
|N | ≤ m such that
Neg every trace in ΓF violates one of the norms in N
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Pos no trace in ΓT violates any of the norms in N .

Theorem 4. The problem of synthesising a set of conditional prohibitions or condi-
tional obligations is NP-complete.

Proof. For membership in NP, observe that it is possible to guess a setm ≤ |ΓF | norms
and check in polynomial time that they correctly classify the traces.

Hardness follows from the NP-hardness parts of Theorems 1 and 2.

5 Complexity of Minimal Revision

In this section, we consider the problems of (minimally) revising conditional prohi-
bitions and obligations. These problems are relevant when there is an existing norm
that does not achieve the system objective, and we wish a minimal modification of the
existing norm that does achieve the objective.

Assume we are given a set of traces and a conditional norm (φC , Z(φZ), φD),
(where Z ∈ {P,O}) and need to change it in a minimal way so that it classifies the
traces correctly. The editing distance between conditional norms can be defined in var-
ious ways, e.g., for formulas φC , φZ , φD in disjunctive normal form, this could be the
sum of the numbers of added and removed disjuncts for all three formulas. Note that
the set of non-equivalent propositional formulas built from the set L is finite, and so
is the number of possible different conditional prohibitions or obligations. Regardless
of how the distance between different conditional norms is defined, for a fixed set of
propositional variables L there is a maximal editing distance max(L) between any two
norms using formulas over L.

5.1 Complexity of Minimal Prohibition Revision
Given some distance measure dist defined for any two conditional prohibitions α1 and
α2 over L, the decision problem for minimal prohibition revision can be stated as:

Definition 7. The (decision form) of the minimal prohibition revision problem is as
follows:

Instance A finite set of propositions L; a number m; a finite set Γ of finite traces
partitioned into ΓT and ΓF ; a conditional prohibition (φC , P (φP ), φD) over L.

Question Are there three propositional formulas φ′C , φ′P , and φ′D over L such that
Dist dist((φC , P (φP ), φD), (φ′C , P (φ

′
P ), φ

′
D)) ≤ m

Neg every trace in ΓF violates (φ′C , P (φ
′
P ), φ

′
D)

Pos no trace in ΓT violates (φ′C , P (φ
′
P ), φ

′
D)

Theorem 5. Let dist(α1, α2) be computable in time polynomial in the size of α1 and
α2, and the range of dist over norms built over propositions from L be bounded by
max(L). Then the minimal prohibition revision problem is NP-complete.

Proof. The membership in NP follows from the fact that a solution can be guessed and
checked in polynomial time.

NP-hardness is by reduction from the prohibition synthesis problem. Note that if
a solution to the prohibition synthesis problem exists, it will be at most at distance
max(L) from the input norm. So to solve the prohibition synthesis problem, we can
ask for a solution to the minimal prohibition revision problem with m = max(L).
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5.2 Complexity of Minimal Obligation Revision

Given some distance measure dist defined for any two conditional obligations α1 and
α2 over L, the decision problem for minimal obligation revision can be stated as:

Definition 8. The (decision form) of the minimal obligation revision problem is as fol-
lows:

Instance A finite set of propositions L; a number m; a finite set Γ of finite traces
partitioned into ΓT and ΓF ; a conditional obligation (φC , O(φO), φD) over L.

Question Are there three propositional formulas φ′C , φ′O, and φ′D over L such that
Dist dist((φC , O(φO), φD), (φ′C , O(φ′O), φ

′
D)) ≤ m

Neg every trace in ΓF violates (φ′C , O(φ′O), φ
′
D)

Pos no trace in ΓT violates (φ′C , O(φ′O), φ
′
D)

Theorem 6. Let dist(α1, α2) be computable in time polynomial in the size of α1 and
α2, and the range of dist over norms built over propositions from L be bounded by
max(L). Then the minimal obligation revision problem is NP-complete.

Proof. The membership in NP follows from the fact that a solution can be guessed and
checked in polynomial time. Analogously to the minimal prohibition revision problem,
NP-hardness is by reduction from the obligation synthesis problem; if a solution to the
obligation synthesis problem exists, it will be at most at distance max(L) from the
input norm. So to solve the obligation synthesis problem, we can ask for a solution to
the minimal obligation revision problem with m = max(L).

6 Related Work

There has been a considerable amount of work on the automated synthesis of norms. In
this section, we briefly review some of the main approaches, focussing on work that is
most closely related to our approach.

We first review ‘offline’ approaches, in which norms are synthesised at design time.
Shoham and Tennenholtz [34] (see also [16]), consider the problem of synthesising a
social law that constrains the behaviour of the agents in a MAS so as to ensure that
agents in a focal state are always able to reach another focal state no matter what the
other agents in the system do. They show that synthesising a useful social law is NP-
complete. Van der Hoek et al. [18] recast the problem of synthesising a social law
as an ATL model checking problem. The authors show that the problem of whether
there exists a social law satisfying an objective expressed as an arbitrary ATL formula
(feasibility) is NP-complete, while for objectives expressed as propositional formulae,
feasibility (and synthesis) is decidable in polynomial time. Bulling and Dastani [10]
consider norm synthesis for LTL objectives. In their approach, agents are assumed to
have LTL-defined preferences with numerical values, and the aim of the synthesis is to
produce a norm that enforces the objective for some Nash equilibrium. The problems
they consider are weak and strong implementation, and norm-based mechanism de-
sign. A norm weakly implements a normative behaviour function if there exists a Nash
equilibrium that satisfies the LTL formula. A norm strongly implements a normative



12 D. Dell’Anna et al.

behaviour function iff all Nash equilibria satisfy the formula. Weak implementation
is ΣP

2 -complete in the size of the CGS, preferences, objective and norm. The strong
implementation problem can be solved by a deterministic polynomial-time oracle Tur-
ing machine that can make two non-adaptive queries to an oracle in ΣP

2 and is both
ΣP

2 -hard and ΠP
2 -hard. Weak implementation existence is ΣP

2 -complete. Strong im-
plementation existence is ΣP

3 -complete. In [19], the synthesis of dynamic prohibitions
(that is, prohibitions corresponding to Mealy machines) for CTL objectives is shown to
be EXPTIME-complete. In [32], the synthesis of dynamic norms for LTL objectives and
Nash equilibria is shown to be 2EXPTIME-complete when considering the existence of
a Nash equilibrium satisfying the objective, and in 3EXPTIME for enforcing all Nash
equilibria to satisfy the objective. Other work on norm synthesis using logical specifi-
cations of objectives includes [36,2]. Alechina et al. [4] introduce the concept of norm
approximation in the context of imperfect monitors. A conditional norm is synthesized
to approximate an ‘ideal’ norm in order to maximize the number of violations that an
imperfect monitor can detect. We assume, however, perfectly monitorable norms, and
we aim at synthesizing norms that are better aligned with the MAS objectives by using
execution data. In contrast to the approach we present here, these approaches assume
a complete model the agents’ behaviour is available, e.g., in the form of a transition
system or a Kripke structure.

Morales et al. present LION [28], an algorithm for the synthesis of liberal normative
systems, i.e., norms that place as few constraints as possible on the actions of agents. To
guide the synthesis process, LION makes use of a normative network: a graph structure
that characterises the generalisation relationship between different norms, which is used
to synthesise more general, that is, more liberal, norms when possible. The norms syn-
thesised by LION are so-called action-based norms, which prohibit agents to perform
actions in certain states [5]. In our work, we focus on the problem of revising condi-
tional norms with deadlines, which are behaviour-based, or path-based, norms, prohibit-
ing (or obliging) agents from exhibiting certain behaviours. While both our work and
LION synthesise norms to avoid undesirable system states, in our work we focus on the
problem of synthesising norms from data collected during the execution of the system
(i.e., traces of agent behaviour), while in [28], the synthesis considers properties of the
normative system (e.g., liberality) which are independent of the behaviour of the agents
in the MAS. We consider the liberality of norms an interesting possible extension of our
work that could be integrated as a criterion when selecting a new norm among possible
revisions. Christelis et al. [12] present an EXPTIME algorithm based on AI planning
for synthesising state-based prohibitions that set preconditions to the actions the agents
can perform in a regimentation setting. In our work, we do not assume that norms can
be regimented.

Another strand of work focuses on the ‘online’ synthesis of norms, where norms
emerge from the interactions of agents in a decentralised way, e.g., [3,33]. Unlike our
approach, such approaches typically assume that the agents are cooperative, and/or that
some minimal standards of behaviour can be assumed. However, cooperation between
agents cannot be always assumed, particularly in open MAS.

Closer to our work are online approaches that use agents’ behaviour to guide cen-
tralised norm synthesis. For example, Morales et al. [27] present algorithms for the
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online synthesis of compact action-based norms when the behaviour of agents leads to
undesired system states. In contrast, we consider conditional norms with deadlines that
regulate patterns of behaviour. In other work, Morales et al. have used game theoretic
concepts to guide norm synthesis [29,30]. Their control loop includes game recogni-
tion, payoff learning, and norm replication. Their approach to norm synthesis makes use
of evolutionary processes to determine, off-line and via simulation, effective and evolu-
tionary stable norms, which are then enforced at run-time. However, while the resulting
norms are evolutionary stable, their approach requires sufficient knowledge about the
agents, their goals and the environment in which they operate, to permit simulation of
their interactions. In our work, instead, we focus on a setting where the only labeled
traces of agent behaviors are available. Miralles et al. [26] present a framework for the
adaptation of MAS regulations at runtime. They consider norms expressed via norm
patterns (i.e., IF-THEN rules associated with constraints on the operators and on the
values that the norm components can take). The authors describe an adaptation mecha-
nism based on Case Based Reasoning. Adaptation is performed at runtime individually
by a number of assistant agents and then, via a voting mechanism, a final adaptation
is approved. The decision on how to adapt norms is taken based on similar previously
seen cases. On similar lines, Dell’Anna et al. [14] propose a framework for the runtime
selection of alternative norms based on runtime data and for the revision of the sanc-
tions of norms based on the knowledge of agents preferences. Unlike these approaches,
we do not assume knowledge of the agents’ internals, e.g., their preferences [14] or
their reasoning and communication capabilities [26]. Corapi et al. [13] and Athakravi
et al. [7] discuss the application of Inductive Logic Programming (ILP) [15] to norm
synthesis and norm revision. In their work, the desired properties of the system are de-
scribed through use cases (event traces associated to a desired outcome state), and ILP
is used to revise the current norms so to satisfy the use-cases. In their approach, norms
and desired outcome are strictly coupled: the desired outcomes of execution traces are
expressed in the same language of the norms and, therefore, are directly enforceable.
In our approach we consider MAS objectives that cannot be directly enforced, and we
use norms as a means to achieve such objectives (e.g., a speed limit norm is a means
to achieve vehicles’ safety, but it is not possible to directly enforce safety on vehicles:
“no accidents should occur" is not directly enforceable on drivers). In our work, the
only knowledge of the MAS objectives available to the revision mechanism, is a given
boolean labeling of the execution traces. The causal relation between norms and MAS
objectives is not given. Because we do not assume that the underlying causal structure
of the domain is known to our revision mechanism, we are unable to generate prov-
ably correct norm revisions as in ILP-based approaches like those of Corapi et al. [13]
and related ones (e.g.,[21,31]). ILP-based approaches and our approach can therefore
be seen as representing different trade-offs between the amount of background knowl-
edge assumed about the possible causes of norm violations, and the guarantees that
can be given regarding a particular (candidate) revision. Mahmoud et al. [25] propose
an algorithm for mining regulative norms that identifies recommendations, obligations,
and prohibitions by analyzing events that trigger rewards and penalties. They focus on
agents joining an open MAS who have to learn the unstated norms; we, instead, study
how to alter existing norms from the point of view of a centralized authority.
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Finally, our work is influenced by research on norm change, including logics for
norm change [22,8], the study of the legal effects of norm change, analyzed and for-
malized by [17], and the contextualization of norms [20], which studies how to refine
norms to make them suitable for specific contexts. In our framework, this corresponds
to modifying the detachment condition and the deadline of the norms.

7 Conclusions

We considered the problem of synthesising and minimally revising norms to achieve
a system objective from labelled traces of agent behaviour in a multi-agent system
(MAS). We considered a setting where the internals of the agents in the MAS are un-
known and where norms are expressed in a different language from that of the system
objective that they intend to bring about. In such setting, explicit knowledge about the
relationship between the enforced norms, the agents’ behavior and the MAS objective is
not given, and the norm synthesis and revision rely on traces of agent behaviour labeled
as positive or negative, depending on whether each satisfies or not the system objective.
We showed that the problems of norm synthesis and minimal revision are NP-complete.
In future work, we plan to investigate the synthesis of approximate norms (i.e., norms
that do not classify all traces perfectly), and more tractable heuristic approaches to
norm synthesis and revision where, for instance, only a bounded number of candidate
revisions of a norm are synthesized based on the available data and the semantics of
conditional norms, and the most accurate norm (i.e., the norm with highest accuracy
w.r.t. the labeled traces) is selected.
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