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Abstract A common problem facing an organisation of autonomous agents is to
track the dynamic value of a signal, by aggregating their individual (and possi-
bly inaccurate or biased) observations (sensor readings) into a commonly agreed
result. A meta-problem is to explain the observation of the value: to say what
rules produced the signal value that has been observed. In this paper, we use the
Regulatory Theory of Social Influence and self-organising multi-agent systems
to simulate a Distributed Information Processing unit (DIP) trying to solve such a
meta-problem. Specifically, we examine what configuration of initial conditions
on the DIP produce what type of epistemic condition for the collective, and de-
termine the explanatory adequacy of this condition, i.e. to what extent does the
DIP’s explanation of the rules match the actual rules. The results offer some fur-
ther insight into the need for epistemic diversity for self-improvement in dynamic
self-organising systems.

Keywords: distributed information processing · explanatory adequacy · knowl-
edge processing · social influence · multi-agent systems.

1 Introduction

A commonly recurring problem confronting an organisation, composed of autonomous
agents connected by a (social) network but lacking a central authority, is to map a set
of individual measurements, judgements, votes, opinions or preferences into a single
collective output. This problem is typically encountered in social systems (e.g. jury
trials, deliberative assemblies, etc. ) as well as cyber-physical systems (e.g. cybernetic
systems, sensor networks, etc.)

An instance of this general problem is truth tracking, when the task of an organi-
sation of autonomous agents is to track the dynamic value of a signal, by aggregating
their individual (and possibly inaccurate or biased) observations (sensor readings) into
a commonly agreed result. In this sense, the organisation can be seen as a Distributed
Information Processing (DIP) unit. However, such a DIP can also face a meta-problem:
to explain the observation of the value – i.e. to say what rules produced the signal value
that has been observed. In this case, the DIP is not trying to pool its diverse opinions
to order to produce a social choice, but to pool its diverse knowledge to produce a
‘plausible’ explanation.
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This paper investigates a solution to this problem using the Regulatory Theory of
Social Influence (RTSI) [12]. RTSI is chosen because it has two unique propositions:
firstly, that social influence is bilateral, i.e. that as well as sources seeking targets to
influence, targets are seeking sources by whom to be influenced; and secondly that in
addition to exchanging opinions, people also exchange information processing rules.
Both of these propositions are essential for addressing the problem: the first because
we want experts or ‘specialists’ to emerge, because they know more and are better at
solving the problem; and the second because we want their knowledge (of the rules) to
flow over the social network.

Therefore, we implement an algorithmic model of RTSI within a self-organising
multi-agent systems’ to simulate a DIP trying to solve such a meta-problem by propos-
ing (collectively) a set of rules to explain the observed value that may (or may not)
match the actual rules that produce the value. Specifically, we experimentally investi-
gate what configuration of initial conditions on the DIP produce what type of epistemic
condition of the DIP.

We then want to evaluate the explanatory adequacy of the DIP’s solution. The term
‘explanatory adequacy’ is used in linguistics to describe an analysis which provides
a ‘reasonable’ account of a linguistic phenomenon [18]. We want to know if the DIP
can produce a ‘reasonable’ or ‘plausible’ explanation, based on the extent to which its
collective explanation matches the actual cause (i.e. the ground truth). We measure the
difference using a suitable metric (cosine similarity) and use that as an indicator of
explanatory adequacy.

Accordingly, this paper is structured as follows. Section 2 establishes the back-
ground of DIP and RTSI, and gives a formal specification of the problem. Section 3
describes the experimental design, Section 4 defines the multi-agent simulation, and
Section 5 presents a set of experimental results. After a consideration of related and fur-
ther work in Section 6, Section 7 concludes that these results offer some further insight
into the need for epistemic diversity for self-improvement in dynamic self-organising
systems.

2 Background: DIP, RTSI and Plato’s Cave

In this section we review the background to this work: organisations as distributed infor-
mation processing units (DIP), a theory of social influence in such units, the Regulatory
Theory of Social Influence (RTSI), and a specification of the problem we are trying to
solve, which has similarities, at an abstract level, to the problem posed in the allegory
of Plato’s Cave (see https://tinyurl.com/yckmzkyf).

2.1 Distributed Information Processing Units (DIPs)

Many organisations, in the form of complex cyber-physical, socio-technical or social
systems, often have to function as Distributed Information Processing units (DIPs), i.e.,
although composed of many different autonomous components, the components have
to act as a collective to transform a set of data inputs into a single output. Although, de-
pending on the context, the precise definition differs (cf. [22] vs. [12]), in this paper the

https://tinyurl.com/yckmzkyf
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term DIP refers to an organisation of autonomous, (socially) networked agents encoun-
tering a requirement to self-manage their diverse, dispersed, and potentially incomplete
and inconsistent knowledge.

In general, successful knowledge management enables a DIP to make correct deci-
sions, identify expertise, maintain collective memory, provide education, spark innova-
tion and even accumulate “wisdom”. A more mundane function, perhaps, is to converge
on a ground truth from a set of observations that may have been influenced by environ-
mental or community bias (cf. [20]). Here, though, rather than converging on the truth,
we want to study how a DIP can produce explanatory adequacy: can the DIP converge
on the rules that produced that truth, rather than the truth itself. In this situation, we need
a theory which considers social influence not just in terms of the exchange of opinions,
but also in the exchange of processing rules. The theory we use is the Regulatory Theory
of Social Influence.

2.2 Regulatory Theory of Social Influence (RTSI)

RTSI is a psychological theory proposed by Nowak [12] that focuses on the target’s per-
spective of social influence, and specifically, examines how the targets look for sources
by whom to be influenced. This theory emphasises a target’s intentions and strategies,
and posits that targets actively monitor others’ opinions and behaviours, and and are
fully engaged in the controlling the influence process.

In this way, a target tries to optimise its decision-making and conserve its own re-
sources by delegating the tasks of information gathering and/or information processing
to individuals that they credit for the such tasks. This enables targets to leverage others’
network, processing capacity or knowledge, maximising their access to information
and information processing rules. Therefore, social influence becomes an instrument
of targets to maximise their individual cognitive efficiency and quality of their out-
comes, which are reflected by improvements in individual and collective performance
over time.

2.3 Problem Specification

In this study, the situation to be addressed by a DIP, using RTSI, is illustrated in Fig-
ure 1. The DIP is embedded in an environment, in which there is a process P that
converts some set of inputs into an output. The process P is parameterised by a set of
n processing rules, each with an associated weight in [0..1]. This set of rules, denoted
by K, is the ground truth knowledge given by:

K = {(ri, wi) | i ∈ [1..n] ∧Σn
i=1wi = 1.0}

We denote by Kr the set of rules in K (without the weights).
Each agent a in the DIP ‘knows’ Ka, which is some subset of m rules of Kr, m ≤ n.

Each agent associates a random weight with each of its rules, with the weights nor-
malised to sum to 1.0, so that the knowledge of agent a is:

Ka = {(r1, w1), . . . , (rm, wm)} such that ∀i, 0 ≤ i ≤ m.ri ∈ Kr
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Figure 1: The Problem: Is KDIP an ‘adequate explanation’ for output of P(K)?

Note, that if i = 0, then the agent knows nothing.
The problem for the N agents comprising the DIP is to use their partial and dis-

tributed knowledge to ‘explain’ the solution to process P as parameterised by K. This
is done by each agent offering its own explanation Ka for parameters to process P , and
these are ‘aggregated’ into a collective explanation KDIP . In addressing this task, the
agents have three ‘tools’ at their disposal:

– sharing: using RTSI, an agent can ask one of the neighbouring agents in its social
network, for a processing rule (or rules) that it (the neighbouring agent) used in its
‘explanation’ of K.

– feedback: each agent receives feedback from the environment on the quality of the
collective knowledge and their own contribution, which is used to update ‘attitudes’
to itself and a neighbouring agent (if it asked one); and

– ‘discovery’: new agents joining the system may bring new knowledge to the system,
which may then be shared as above, using RTSI.

Given this context, we investigate:

– what different initial conditions of the DIP, including population variation (e.g.
static, dynamic), rate of social learning, and rate of ‘discovery’, . . .

– . . .produce what different epistemic condition on the individual knowledge bases,
i.e. the similarity of {Ka | a ∈ N}, which we identify as either diversity, incon-
gruence, or stagnation, and. . .

– . . .evaluate explanatory adequacy of KDIP , i.e. the (dis)similarity of KDIP to K.

In passing, we note that this problem can be seen, at its most abstract, as a form of
Plato’s Cave, wherein a group of people in a cave try to derive the true nature of an ob-
ject from the shadow it casts on the cave wall. Note, though, there are three perspectives
on knowledge: K, the ground truth knowledge, KDIP , the aggregated knowledge of the
DIP, and KDIP , and the “knowledge potential” K∪, which is an epistemological limit
on what it is possible for an agent to know, because this knowledge exists somewhere
in the DIP.

However, as in Plato’s Cave, this is not a once-off, one-shot problem. The overall
situation is as illustrated in Figure 2, where it can see seen that the DIP composition is
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dynamic (agents may leave and join), and the knowledge made available (“discovered”,
or introduced along with new agents) also varies.

Figure 2: The DIP Unit and Knowledge changing over time

Therefore, “expertise” in the group is also temporary, and knowledgeable agents
who may be good at the task may also be lost to the group. As such, the there are
two perspectives on the collective: one being a functional perspective as a DIP, where
the collective pool knowledge and identify expertise in order to accomplish a common
goal (cf. [1]), and the other being a societal perspective, where the group is using social
influence as a way to persuade and change attitudes about a common problem (cf. [13]).
Accordingly, we will use the terms ‘experts’ or ‘specialists’ in the DIP and the sources
of influence in RTSI inter-changeably, and equate knowledge with the processing rules;
likewise the terms DIP, community and collective are all inter-changeable.

3 Experimental Design

To address the problem defined in the previous section, this section details the experi-
mental design, firstly specifying the initial conditions on the DIP, (i.e. the independent
variables), and secondly specifying a metric for computing the DIP’s epistemic condi-
tion and explanatory adequacy (i.e. the dependent variables).

3.1 Initial Conditions for the DIP (Independent Variables)

For specifying the initial conditions on the DIP, we define two independent experimental
variables, F and R. The former determines the rate of change of the population and rate
of change of knowledge. The latter defines a constraint on the RTSI algorithm which
affects how the agents communicate the processing rules and how they influence one
another.
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The DIP will operate in a succession of T epochs, and every t < T epochs (except
in the static condition) some new agents are added and some are removed. In each epoch
the DIP will produce and evaluate KDIP against K, so F can have one of eight values:

– static: The population consists of N agents, they remain active throughout all T
epochs. Each agent a is initialised with knowledge Ka being any subset of K.

– dynamic: The population consists of N agents, and every t epochs a new generation
of N

10 agents joins the network and N
10 of the existing agents leave. The agents are

initialised having any subset of the eight processing rules.
– restart: The population consists of N agents, and every t epochs N

10 new agents join
the network and N

10 leave. The 1st generation of N agents is initialised so that each
agent’s a knowledge is a subset of {(r1, w1), (r2, w2)}. The next generation, which
consists of N

10 agents, is initialised knowing either a new rule or no rule, so each
new agent’s knowledge Ka is either {(r3, 1)} or {}, and so on till the generation
the generation that knows {}, or {(r8, 1)}. After that generation, the upcoming
generations are initialised with knowledge Ka being any subset of K.

– iterate: The population consists of N agents, and every t epochs N
10 new agents

join the network and N
10 leave. The 1st generation is initialised knowing {(r1, 1)},

the next knows a new rule, so their knowledge is {(r2, 1)}, and so on, so every
new generation knows only a new processing rule and the only way to access past
knowledge is to interact with others.

– add rapid: The population consists of N agents, and every t epochs N
10 new agents

join and N
10 leave. The 1st generation of N agents is initialised so that each agent’s

a knowledge is a subset of {(r1, w1), (r2, w2)}. The next generation knows what
their ancestors knew and a new processing rule, so the knowledge of each new
agent a is a subset of the rules {(r1, w1), (r2, w2), (r3, w3)}, and so on. So, new
knowledge is progressively added to the population through the new generations.

– add slow: The is scenario is similar with add rapid, but, in this setting, the new
generations are added every t ∗ 1.6 epochs instead of t.

– add rapid/slow long: New generations are added every t/t ∗ 1.6 epochs as per add
rapid/slow, but the simulator runs for T ∗ 2 epochs.

Additionally, for each of the different values of F we specify two ways of commu-
nicating the processing rules R:

– max: The sources can only share only one processing rule, therefore they select the
rule with greatest weight, which corresponds to the rule that they perceive as the
most important piece of knowledge.

– all: The sources share their knowledge base, so the target gains access to all the
rules that the source knows.

3.2 Epistemic Condition and Explanatory Adequacy

To ‘measure’ the epistemic condition and the explanatory adequacy of the DIP under
different initial conditions, we requires a metric to measure diversity in two dimensions:

– the epistemic diversity, i.e. how different the agents’ knowledge bases are from
each other, given by

∑N
i=1

∑N
j=1 diff(i, j); and



3. EXPERIMENTAL DESIGN 7

– the explanatory adequacy, i.e. the divergence of the DIP’s knowledge from the
ground truth knowledge, given by diff(KDIP ,K).

For the diff function, there are many metrics to measure diversity, such as Euclidean
Distance, Manhattan Distance, KL divergence etc. We use cosine similarity, because we
wanted to to identify the variations between the vectors of weights on processing rules –
which represent agents’ knowledge and ground truth of the environment – and therefore
need a metric that focuses on the orientation rather than the magnitude.

Cosine similarity is a metric used for the comparison of the similarity between two
non zero vectors A and B in Rn. Specifically, it measures the cosine of the angle be-
tween the two vectors, and its value is given by 1:

cos sim(A,B) = cos(θ) =
A · B

∥A∥∥B∥ =

∑n
i=1 AiBi√∑n

i=1 Ai
2
√∑n

i=1 Bi
2

(1)

After defining the metric for evaluating the performance of the collective and the
individuals, we need then to define the two groups of the population that we are going to
observe. The first group is the participants which refers to all the agents that have been
randomly selected to participate to the next epoch. The other group, is the ‘specialists’,
which is a subset of the participants and refers to the sources of processing rules. In
particular, in this context, if agent i asks for processing rules agent j, and j asks agent k,
then specialist is considered the agent k which constitute the actual source of influence.
These agents don’t have any notion of expertise, but they are the ones credited by their
network.

In the beginning of the experiments, all the agents give equal credence for process-
ing rules to all the agents of their network, they are initialised with different knowledge
,and consequently they give different processing rules to the agents that ask them, and
the credence that others give to them is adjusted overtime based on the utility of the
information that they offer.

Aiming to identify the capability of the agents to adequately explain the environ-
ment (explanatory adequacy), we computed the cosine similarity of the knowledge
bases Ka of agents with the ground truth K, which we denote with CE1 as well as
the cosine similarity of the knowledge bases Ka of specialists with the ground truth K,
which we denote with CS1. Moreover, to observe knowledge distribution and diversity
through the exchange of processing rules (epistemic diversity), we measured the en-
semble average cosine similarity of the knowledge bases Ka of the agents, which we
denote by CE2, the ensemble average cosine similarity of the knowledge bases Ka of
the specialists, which we denote by CS2. Moreover,The calculation of CE1 and CE2 is
given by Equations 2 and 3 respectively, and the calculation of CS1 and CS2 can be
computed by substituting participants with specialists on those equations.

CE1 =

∑participants
i=1 cos sim(Ki,K)∑participants

i=1 i
(2)

CE2 =

∑participants,
i=1

∑participants,j ̸=i
j=1 cos sim(Ki,Kj)

(
∑participants

i=1 i)
2 −∑participants

i=1 i
(3)
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4 Formal Specification

This section provides the formal specification of the multi-agent model. This section
defines the agents of the system, the environment in which they exist as well as the RTSI
algorithm for knowledge processing based on which the agents act in this environment.

4.1 The Environment

The environment E consists of a network of agents which try to identify the complete
knowledge base K corresponding to the ground truth. The agents are connected through
a network G(N ,m, µ) which is a Klemm-Eguiluz network [8] with N nodes (where
each node is a agent), m the number of fully connected agents used for the generation
of the network and characterised as “active”, and µ the probability of a new agent to be
attached to one of the “active” agents (otherwise the agents attaches to an inactive agent
and becomes active, substituting a randomly selected agent from the active agents) as
described in [17]. This network type was selected because it combines all three prop-
erties of many “real world” irregular network, that is high clustering coefficient, short
average path length, and scale-free degree distribution.

4.2 Agent Specification

The autonomous networked units of the population are described by the term “agents”.
The specification of the agents is based on the specification in [15], and is given by the
6-tuple defined in 4:

i = ⟨SN ,Ki, sci,TNi , a, b⟩ (4)

where SN i is its social network (connected neighbours), Ki its knowledge, which is a
subset of the knowledge in the environment K (possibly with different weights), sci is
a measure of self-confidence of its knowledge (relative to its neighbours), in whom it
also gives credence τi,j for each agent j ∈ SN i (cf. [3]). These values are stored in an
ordered list of credence to neighbours TNi , and are updated each time agent i asks a
neighbour j for knowledge (i.e. for a processing rule or rules) depending on how well
(similarly) this neighbour approximates the complete knowledge of the environment K.
Each agent orders its neighbours in descending order of credence. Each agent has also
two reinforcement coefficients a, b which define the rate of change of self-confidence
and credence to the network after each epoch.

4.3 Algorithm

The algorithm is an iterative process of T epochs, and in every epoch each participating
agent goes through the steps described in 1. Therefore, in every epoch, a subset of agents
A is randomly selected to participate in the next epoch participants ⊂ A. The aim of
the agents is to manage to produce a good approximation of the complete knowledge
base of the environment K, while they are only given only a subset of this knowledge.

Throughout the epochs each agent look for sources in the DIP that can provide the
processing rules that produce the best approximation of the complete knowledge K.
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The knowledge of the DIP can be accessed by asking a neighbouring agent. Therefore,
in each epoch, each agent iterates over its social network SNi according to the order
of credence TNi , to find the source to ask. The neighbour selected j is questioned how
similar is its knowledge with the complete knowledge base S∪ and also the agent ask-
ing computes the similarity of its own knowledge with the ground truth S(self). If the
neighbour asked can offer a better approximation of the ground truth than the agent
asking has, then the agent proceeds in asking the neighbour for processing rules. De-
pending on the value of the independent variable R, the agent that asked for processing
rules (target) either receives as a reply a processing rule with a weight (which is the pro-
cessing rule of the neighbour j that has the greatest weight for j), if R = max , otherwise
it receives all the processing rules and their weights. Then, i is integrating this knowl-
edge K∪ to its knowledge Ki. After that follows the process of reflection, in which each
agent updates its credence to the neighbour selected τij and its self-confidence sci de-
pending on whether it can more adequately explain the environmental knowledge than
its neighbour.

wriavg =

∑participants
j=1 wrij∑participants

j=1 j
(5) wric =

wriavg∑n
i=1 wriavg

(6)

In this way, the collective forms a knowledge KDIP which is the outcome of the ag-
gregation of the participating agents’ knowledge and normalising the weights, as shown
in 5 and 6. The collective/DIP knowledge is defined as in 7.

KDIP = {(r1, wr1c), ..., (rr , wrrc)} (7)

Algorithm 1: RTSI for knowledge seeking: for each agent i

j = selected neighbour from network ;
S(self ) = cos sim(K(self ),K);
S∪ = cos sim(K∪,K);
if S(self ) < S∪ then

if R = max then
K∪ = {(rx, wrx)|(rx, wrx) ∈ Kj ∧ ¬∃(ry, wry ) ∈ Kj .wry > wrx} ;

else
K∪ = Kj ;

end
end
if S(self )

i > S∪ then
sci = sci + a ∗ (1− sci);
τi,j = τi,j − b ∗ τi,j ;

end
if S(self ) < S∪ then

sci = sci − b ∗ sci;
τi,j = τi,j + a ∗ (1− τi,j);

end
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According to this formal specification, a multi-agent simulator has been imple-
mented in Python3, which is an extension of the system presented in [14] to include the
exchange of processing rules. This simulator was used to run a series of experiments,
the results of which are present in section 5.

Table 1 presents the simulator parameters for the agents and the RTSI algorithm.
This specifies either a fixed representative value used in the experiments (e.g. the num-
ber or agents, reinforcement coefficients, etc.) or a range of values for those that are ran-
domly assigned (e.g. the individual agent knowledge bases). Other experiments could
examine different combinations of initialisation of these variables, e.g. to look for ef-
fects of scale, but this is left for further work.

Symbol Description: Factor of Agent i Initial Condition/Range
N network of agents 100
m total number of edges N

10

µ number of edges to ‘active’ agents 0.75
participants agents participating in the next epoch N

2

Ki individual knowledge base {(r1, w1), . . . , (rm, wm)}, ∀i, 0 ≤ i ≤ m.ri ∈ Kr

rk processing rule k k = {1,2,...,r}
wrk weight of rule rk 0 ≤ wrk ≤ 1
sci self-confidence for similarity of knowledge 0.5
a, b self-confidence & credence reinforcement coefficients 0.1, 0.1
SNi social network 1 to N agents
TNi ordered list of credence to social network list length from 1 to N
τij credence to agent j 0 ≤ τij ≤ 1

S(self) cos sim between self and environmental knowledge 0 ≤ S(self) ≤ 1
S∪ cos sim between knowledge of agent (neighbour) asked and ground truth 0 ≤ S∪ ≤ 1
r∪ rule proposal of (neighbour) agent asked rk. ∈ Kr

w∪ weight proposal of (neighbour) agent asked 0 ≤ w∪ ≤ 1
K∪ knowledge proposal of (neighbour) agent asked {(r1, w1), . . . , (rm, wm)}, ∀i, 0 ≤ i ≤ m.ri ∈ Kr

KDIP collective knowledge {(r1, w1), . . . , (rm, wm)}, ∀i, 0 ≤ i ≤ m.ri ∈ Kr

wriavg average weight of rule ri 0 ≤ wriavg ≤ N
2

wric normalised average weight of rule ri 0 ≤ wric ≤ 1

Table 1: Simulator Parameters and Variables

5 Experimental Results

This section describes three experiments which investigate what initial conditions on
the DIP produce what type of epistemic condition, and how ‘adequately’ does that epis-
temic condition explain the ground truth knowledge. The experiments range over the
variables F and R of Section 3.1 under the initial conditions specified in Table 1, with
T = 5000, t = 300:

– Experiment 1: Static population of agents, with complete fixed knowledge, and
dynamic population with complete fixed knowledge (all the knowledge is available
from the first epoch of the simulation).

– Experiment 2: Dynamic population with progressive addition of new knowledge
but non-persistence of ‘discovered’ knowledge.

– Experiment 3: Dynamic population with progressive addition of new knowledge
and with persistence of already ‘discovered’ knowledge.

The following subsections describe the results of each experiment in turn, before dis-
cussing some over-arching results in Section 5.4.
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5.1 Experiment 1: Static and dynamic populations

In the first set of experiments, we explore the dynamics of the system for F being set
to static and dynamic, and agents are initialised with any combination of the available
processing rules.

Figure 3 illustrates the evolution of common and specialists knowledge for the dif-
ferent settings. Specifically, the 1st column illustrates the results for static and the 2nd

for dynamic for R being max and all. The black line is calculated according to CE1, the
red based on CS1, the green according to CE2, and, finally, the blue line based on CS2.

Therefore, the black line indicates how ‘adequately’ the DIP identifies the ground
truth K, while the red line indicates whether how ‘adequately’ the specialists identify
the ground truth K. The green and blue lines demonstrate the diversity of knowledge
within the collective and within the specialists, showing the (dis)similarity between the
knowledge of each group.

R static dynamic

max

all

Figure 3: Exp. 1: Knowledge dynamics for static and dynamic population.

Starting with the static condition, when R = max , the similarity between the pro-
cessing rules of the agents is high, since the group as a whole is influenced by the
specialists to promote a single rule. By contrast, when the sources share all their knowl-
edge (R =all), the community and the specialists similarity is decreased. However, the
lines corresponding to how well do specialists and community track the environmental
knowledge (red and black) remain low in both cases. This is because the population
is static, therefore the community is prone to ask the sources credited during the first
epochs, regardless of whether they maintained their knowledge. Static populations are
stable but also stagnant and agent don’t increase significantly their processing capacity
although they could (since all the knowledge is discovered).

With the dynamic condition, for both max and all, the agents can better explain the
environmental knowledge. In the former case, the knowledge of the specialists and the
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community is continuously modified as illustrated by the fluctuating green and blue
lines. This demonstrates that different epistemes are generated in this condition, and the
system could be characterised as quasi-stable and moving from one temporary equi-
librium to another with different values for its control variables (cf. [16]). In the latter
case, the specialists are well-identified and have significantly higher similarity with the
environmental knowledge than the community; however it seems that the other agents
cannot assimilate this knowledge and the DIP knowledge seems stagnant.

5.2 Dynamic population, progressive addition, non-persistence

In this experiment, we observe how the system works with a dynamic population (in
which the specialist sources are not so easily identified), there is progressive addition
of new knowledge brought by joining agents, but knowledge is non-persistent (i.e. new
agents only bring new ‘discovered’ knowledge).

Figure 4 illustrates the results for restart and iterate in the first and the second
column respectively.

R restart iterate

max

all

Figure 4: Exp. 2: Knowledge dynamics for DIP with non-persistent knowledge

In the restart condition, the first generation is initialised with two rules available,
the next joins with the third rule, and so on until the 8th generation that has all the rules
available (as defined in section 3.1). For R = max , the similarity of processing rules
within the community is high since agents are given only one rule from the sources.
This phenomenon is less striking for R = all , where agents quickly assimilate new
knowledge. Note that when new generations possess only one processing rule (only the
new piece of knowledge), agents consider that they cannot learn from others, and their
knowledge remains narrow (low similarity with the environmental knowledge). How-
ever, after epoch 2100, when all the processing rules are made available for the new
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generations, there is a significant increase in the community and specialists’ knowl-
edge because agents have different levels of knowledge (i.e. different similarity with
environmental knowledge) and they seek sources to provide them with missing bits of
knowledge.

The phenomenon of agents not asking for processing rules because they perceive
others as having similar knowledge is even clearer under the iterate condition. Par-
ticularly, in both max and all, most agents seem to have equal knowledge (i.e. equal
similarity of own processing rules and environmental processing rules), due to the fact
that they all have either zero or one processing rule, and consequently only agents hav-
ing an empty knowledge base ask for knowledge. This variation between the empty
knowledge base and the knowledge base containing one processing rule generates the
difference in the similarity of the knowledge of the sources and the community (red and
green lines), with the specialists. Additionally, the fluctuation of the intrinsic similarity
of the collective as well as the group of specialists is caused by the randomness in the
selection of agents to leave and join the network.

5.3 Dynamic population, progressive addition, persistence

In this experiment, we observe the behaviour of the system under progressive addition
of knowledge, but new agents may bring any discovered knowledge. Figure 5 demon-
strates CE1, CS1, CE2, and CS2 for the add rapid/slow (long) scenarios, for R max in
the first row and all in the second.

add rapid add slow add rapid long add slow long

Figure 5: Exp. 3: Knowledge dynamics for progressively added knowledge.

The rapid progressive addition of knowledge allows minor improvement both in
short-term and long-term (add rapid and add rapid long). Particularly, in both max
and all, the specialists and community knowledge remains low (red and blue lines)
because new rules cannot be assimilated. By contrast, the slow addition fosters epis-
temic improvement (add slow and add slow long). Moreover, in all these scenarios,
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when R = max different epistemes are produced because sources share parts of their
knowledge and both the community and the sources develop different beliefs over time.

5.4 Summary of experiments

To conclude this section, Table 2 summarises what configuration of initial conditions
for the DIP produces what type of epistemic condition of the DIP, and assesses the
capability of the DIP to explain adequately the environment.

F R Epistemic Condition Explanatory Adequacy
static max epistemic stagnation KDIP ≇ K
static all epistemic stagnation KDIP ≇ K

dynamic max epistemic incongruence conditionally KDIP ∼= K
dynamic all epistemic incongruence conditionally KDIP ∼= K
restart max epistemic diversity KDIP ∼= K
restart all epistemic diversity KDIP ∼= K
iterate max epistemic stagnation KDIP ≇ K
iterate all epistemic stagnation KDIP ≇ K

add rapid max epistemic incongruence conditionally KDIP ∼= K
add rapid all epistemic incongruence conditionally KDIP ∼= K
add slow max epistemic diversity KDIP ∼= K
add slow all epistemic diversity KDIP ∼= K

Table 2: Summary of experimental results

Starting from static, we observe that with a static population the DIP has a high
similarity of knowledge, and therefore they seem to be congruent, but knowledge does
not seem to be exchanged over the social network. This does not allow further improve-
ment in the system and potential adaptation to a dynamic environment. Moreover, the
collective has a low similarity of knowledge with the environment, which means that
they are not adequately explaining the knowledge K. In contrast, dynamic populations
that have all the knowledge available from the first epochs (dynamic) seem to be more
diverse, and they transition from a status of higher to lower congruence and vice-versa.
Although for certain periods of time they manage to accurately explain the environment,
there are other periods that they do not succeed in identifying the ground truth.

Moreover, when agents perceive their knowledge to be similar to others knowledge,
they do not ask for processing rules and the collective knowledge stagnates. Specifically,
in the restart condition, during the first epochs where they are given only one processing
rule, agents do not communicate their knowledge. This is also the case for the iterate
condition, where knowledge remains stagnant while the collective is fragmented. There-
fore, we argue that knowledge remains static and the agents do not manage to model
the phenomenon which they observe in the environment, when they consider that oth-
ers are incapable of helping them (perceiving their knowledge similar with their own
knowledge), although they might have different knowledge that is useful for them.
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This would suggest that systemic evolution and epistemic diversity require both
knowledge differentiation and the capability of agents to perceive this differentiation.
However, in restart, when all the knowledge becomes available (after 2500 epochs), the
agents quickly increase the utility of the collective knowledge with respect to explana-
tory adequacy and they produce a collective knowledge that is a better approximation
of the knowledge situated in the environment. It is worth noting that the sources seem
to ‘emerge’, i.e. to increase the utility of their knowledge, significantly more than the
community, which shows that the ones identified by the collective as specialists are also
more likely to assimilate new knowledge.

Furthermore, the rapid addition of new processing rules fosters diversity, but the
agents do not have enough time to adapt and assimilate new knowledge; therefore they
can be congruent in the short term but incongruent in the long-term. This cannot guar-
antee that the DIP will manage to produce an adequate explanation of the environmental
knowledge for an extended period. In this case, we observe different epistemes being
generated, which could be considered a demonstration of Foucault’s Theory of Knowl-
edge & Power in cyber-physical systems. However, when agents share all their knowl-
edge (all) the population becomes more congruent with the environment and has the
potential to evolve since it can provide an adequate explanation of the environment.

6 Related and Further Research

Related research has extensively studied issues of consensus formation in complex sys-
tems [11]. More specifically, previous work has focused on the conditions which lead to
the alignment of the network [4], as well as the division of it into multiple opinions [7].
Much effort has also been made to identify the probability of forming a majority de-
pending on the network topology [5].

A baseline for using RTSI as a model of distributed information processing, propos-
ing the exchange of subjective opinions for the formation of a collective decision and
the self-organisation have been established in [15]. This work extends this model of
RTSI in a different direction, and specifically proposes the communication of process-
ing rules not for forming a collective opinion but for developing a collective knowledge
and social explanations. Lopez-Sanchez and Müller [10] suggest that social influence
in the form of hate speech can propagate through the whole virtual community and pro-
pose countermeasures such as education, deferring hateful content and cyber activism
as mechanisms for altering it. In this research, we argue that social influence can be also
used as an instrument for spreading knowledge and providing explanations instead of
propagating hate and negative opinions.

Additionally, there is a substantial body of literature in topics of information sharing
and norm emergence. Villatoro et al. [21] proposed the use of social instruments to fa-
cilitate norm convergence and proved that the subconventions delay global convergence
and jeopardise stability. Incremental social instruments and creating ties between agents
has also provided a mechanism for dissolving self-reinforcing structures and facilitat-
ing global norm emergence [9]. Norm or convention emergence can be also achieved
though social learning [19], and under various topologies [2]. Although these works
offer deep insight into the emergence of a collective property (socially-constructed be-
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haviours) from local interactions, our approach differs by proposing RTSI as a mecha-
nism for producing ‘adequate’ collective explanations for external properties from local
interactions.

Further research could establish a set of evaluation criteria and metrics for multi-
agent populations that face problems of producing social and environmental explana-
tions. Additionally, further work on different conditions in the population such as agents
having personalities or intentionally sharing only that part of their knowledge they want
to, in order to direct opinions and thoughts, or more advanced methods for develop-
ing self-confidence and credence to the network, such as models of costly signaling or
block-based approaches. Moreover, future research could extend the communication of
the network and allow not only the exchange of processing rules but also the exchange
of the reasons for selecting these processing rules.

Furthermore, the present setting could be modified so that not only can the com-
munity adapt its knowledge but also the environmental knowledge can change, towards
or away from to the knowledge of the collective. Moving towards the might cause a
loss of expertise that becomes critical when the environmental knowledge moves away
from the DIP knowledge. Finally, a really ambitious step is to move from explanation
to innovation, how knowledge of the rules can be used to shape the environment for
purposes of self-improvement.

7 Summary & Conclusion

In summary, the contributions of this paper are:

– We have specified a problem of explanatory adequacy for self-organising multi-
agent systems, as disparate agents use their social network to aggregate their possi-
bly incomplete and inconsistent knowledge bases to ‘explain’ some observed phe-
nomenon;

– We have implemented an algorithm based on the Regulatory Theory of Social In-
fluence (RTSI), which includes bilateral influence between targets and sources and
the exchange of information processing rules, and implemented it in a simulator for
a Distributed Information Processing unit (DIP); and

– We have run three experiments to explore what initial conditions of the DIP and
the RTSI algorithm lead to what type of epistemic condition for the collective, and
use a similarity metric to determine how well these conditions do indeed provide
explanatory adequacy.

In conclusion, these experiments point to the following postulates that will be ex-
plored in further work, but we regard as crucial for developing DIP for socio-technical
and cyber-physical systems embedded in dynamic environments. These postulates are
that systemic self-improvement through epistemic evolution requires diversity, a will-
ingness to learn, and having good intentions.

Primarily, we argue that systemic self-improvement epistemic evolution requires di-
versity. We observed that DIP composed of almost identical agents, in terms of having
the same knowledge, could not improve their explanatory adequacy. It is also important
that knowledge should be preserved somewhere in the network, because this knowledge
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might yet be relevant and useful at a later time. Moreover, not only should the knowl-
edge of the agents be diverse, but the agents should be capable of understanding the
diversity of knowledge sources, and be able to identify from where whom or where they
can reliably acquire or consult expertise.

Secondly, systemic evolution requires each individual to be willing to learn. Epis-
temic evolution requires agents who are, in the first place, willing to make the effort
to ask and to answer, but are also willing to make the effort to assimilate the answer.
Both of these are assumptions made by the RTSI algorithm, and factoring in obdu-
rate agents (who will not ask) or disruptive agents, who block or break communication
chains requires further experimentation. Another line of investigation would be if the
DIP included ‘denialist’ cliques, a group of self-supporting agents whose inaccurate
knowledge is altered by neither evidence nor argument, and what impact such cliques
might have on effective performance.

Finally, another important requirement for RTSI to enable a DIP to solve the ex-
planatory adequacy problem is that both sources and targets must have good intentions.
From one side, a knowledge source, who is responsible for transferring knowledge,
should not have any intention to manipulate either the target or worse, in fact, perturb
the value of KDIP for its own interests rather than the collective (public) interest. From
the other side, the knowledge seeker, or target, should intend to evolve positively, but
critically and not naively.

To highlight the importance of good intentions from the source’s side, we note that
all the experiments implicitly share a common characteristic: the strong relationship be-
tween knowledge and power. In particular, under all conditions, the DIP does manage
to identify the ‘specialist’ individuals (who are best, or least bad, at the task) and credits
them for sharing their knowledge. Consequently, the most knowledgeable agents are
also the ones who could, in effect control and manipulate common knowledge and pub-
lic opinion. This way, these agents can not only occupy the prosocial role of knowledge
gatekeeper, but could also become an antisocial ‘knowledge dictator’. This dynamic is
clearly illustrated in Foucault’s [6] observation that power is based on and reproduces
knowledge, while knowledge in turn begets power. Therefore, if the sources have other
motives for sharing their knowledge, the expertise of the network can degenerate into
an oligarchy (a ‘knowligarchy’).
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