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Abstract. Mixed-motive games comprise a subset of games in which in-
dividual and collective incentives are not entirely aligned. These games
are relevant because they frequently occur in real-world and artificial
societies, and their outcome is often bad for the involved parties. In-
stitutions and norms offer a good solution for governing mixed-motive
systems, but they are usually studied and incorporated into the system
in a distributed fashion. We propose a method for reaching socially good
outcomes in mixed-motive multiagent reinforcement learning settings by
enhancing the environment with a normative system controlled by an ex-
ternal reinforcement learning agent. By employing this method, we show
it is possible to reach social welfare even in a system of self-interested
agents using only traditional reinforcement learning agent architectures.

Keywords: Mixed-motive games · Centralized norm enforcement · Mul-
tiagent reinforcement learning

1 Introduction

Mixed-motive games, also known as social dilemmas [7], comprise a subset of
games in which individual, and collective incentives are not entirely aligned.
Opposing the view that groups will find ways to act so as to serve the group’s
interests — as individuals often do — when the group’s incentives point to a
different direction than that of its members, a collective action problem may
emerge [20] and drive the whole system to a state socially unwished-for.

Global warming is a real-world case of the collective action problem. In it,
most players — be it an individual, institution, or government — have an in-
centive to emit as much greenhouse gases as desired — for matters of comfort,
financial gains, or popularity —, regardless of how much others are emitting.
If to these ends the collective emissions surpass some threshold, the system in-
creasingly dips into an undesirable state that is bad for all involved.

It has been noted that real-world communities are capable of circumventing
this problem with varying success, conditioned on variables such as group size,
the existence of a communication channel, etc. [21, 22]. These are tied and serve
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to strengthen the idea of social norms; a guide of conduct, or the expectation
individuals hold of others in certain situations [18].

Social norms and norm enforcement mechanisms have been extensively stud-
ied in real-world societies, but also in multiagent systems (MAS) [5, 3]. This
institutional machinery has been used before to provide ways of governing mixed-
motive games, either via centralized solutions — when a central governing body
is tasked with running the institutional apparatus by itself — or decentralized
solutions — when the normative system is conducted by the agents in the system.

Decentralized approaches have been used in the past to deal with degrading
system properties caused by the aggregate effects of individual actions [12, 8].
However, decentralized solutions either imply a) altruistic behavior from the the
agents or b) some form of direct retaliatory capacity — i.e. having the choice
not to cooperate in future interactions. We acknowledge the effectiveness of these
mechanisms in some cases but also recognize they are no panacea.

Consider a system of self-driving autonomous vehicles. Every vehicle has an
incentive to get to its destination as fast as possible. Suppose to this end, a vehicle
engages in careless maneuvers and risky overtakes to gain a few extra seconds.
How could this non-compliant behavior be met by another vehicle sharing the
road?

We could assume that all agents in this system are altruistic to some degree,
and thus such an event would never happen. Preventing socially bad outcomes
by having agents acting empathically has been done before [12, 4]. However, this
is not always a good premise. In the above example, the system itself is em-
bedded in a competitive environment of firms fiercely fighting for market share.
Performance, in the form of getting to the destination faster, might represent
getting a bigger slice of the pie. Does the designer behind the agent have the
right incentives to design altruistic agents?

Alternatively, we could endow agents with the ability to punish defection,
thus changing the expected payoff of such recklessness [8]. But could any form
of punishment be accomplished without compromising the safety of passengers?
Furthermore, even if we agree upon the safety to reciprocate, there are many
situations where direct retaliation might be undesirable. For instance, how do we
address fairness in these systems? If highly interconnected, even a small violation
could be met with a huge wave of public bashing, similar to the problem of
internet cancel culture3.

In case it is not safe to assume other agents will cooperate and it is not desir-
able that agents directly punish each other, we may need to resort to centralized
governance of some kind. Jones and Sergot (1994) propose two complementary
models of centralized norm enforcement [13]:

1. Regimentation: Assumes agents can be controlled by some external entity,
therefore non-compliant behavior does not occur.

2. Regulation: Assumes agents can violate norms, and violations may be sanc-
tioned when detected.

3 https://nypost.com/article/what-is-cancel-culture-breaking-down-the-toxic-online-
trend/
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A drawback of the former is that it constrains agents’ autonomy [18]. Fur-
thermore, implementing a regimentation system is not necessarily trivial; edge
cases may arise such that violations may still occur [13]. On the other hand, the
latter preserves — to some degree — agents’ autonomy by allowing their actions
to violate the norms.

This work proposes a method for reaching socially good outcomes in mixed-
motive multiagent reinforcement learning (MARL) environments. To this end,
we propose enhancing regular mixed-motive environments with a normative sys-
tem, controlled by an RL agent playing the role of a regulator; able to set norms
and sanctions of the system according to the ADICO grammar of institutions
[6] proposed by Crawford and Ostrom (1995). The primary aim of the proposed
method is to solve the collective action problem in mixed-motive MARL en-
vironments using an RL regulator as the norm setter. We also show that, by
employing this method, social control can be achieved using only standard RL
agent architectures4.

2 Background

2.1 Normative systems and the ADICO grammar of institutions

One way of preventing MASs from falling into social disorder [3] is to augment
the system with a normative qualifier. Thus, a normative system can be simply
defined as one in which norms and normative concepts interfere with its outcomes
[18]. In these settings, despite not having an unified definition, a norm can be
generally described as a behavioral expectation the majority of individuals in a
group hold of others in the same group in certain situations [27].

In normative systems, norms that are not complied with might be subject
to being sanctioned. Sanctions can be generally classified into direct material
sanctions, that have an immediate negative effect on a resource the agent cherish,
such as a fine, or indirect social sanctions, such as a lowering effect on the agent’s
reputation, that can influence its future within the system [2]. Nardin [18] also
describes a third type of sanction; psychological sactions are those inflicted by
an agent to himself as a function of the agent’s internal emotional state.

The ADICO grammar of institutions [6] provides a framework under which
institutions — as rules, as norms, or as shared strategies — can be developed
and operationalized. The ADICO grammar is defined within five dimensions:

– Attributes: is the set of variables that defines to whom the institutional
statement is applied.

– Deontic: is a holder from the three modal operations from deontic logic: may
(permitted), must (obliged), and must not (forbidden). These are used to
distinguish prescriptive from nonprescriptive statements.

– Aim: describes a particular action or set of actions to which the deontic
operator is assigned.

4 All relevant code and data for this project is available at https://github.com/
rafacheang/social_dilemmas_regulation.
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– Conditions: defines the context — when, where, how, etc. — an action is
obliged, permitted or forbidden.

– Or else: defines the sanctions imposed for not following the norm

Thus, the rule All Brazilian citizens, 18 years of age or older, must vote
in a presidential candidate every four years, or else he/she will be unable to
renew his/her passport as per defined in the ADICO grammar, can be broken
down into: A: Brazilian citizens, 18 years of age or older, D: must, I: vote in a
presidential candidate, C: every four years, O: will be unable to renew his/her
passport.

2.2 Reinforcement learning (RL) and multiagent reinforcement
learning (MARL)

The reinforcement learning task mathematically formalizes the path of an agent
interacting with an environment, receiving feedback — positive or negative — for
its actions, and learning from them. This formalization is accomplished through
the Markov decision process (MDP), defined by the tuple ⟨S,A,R, T, γ⟩ where
S represents a finite set of environment states; A, a finite set of agent actions;
R, a reward function R : S × A × S → R that defines the immediate —
possibly stochastic — reward an agent gets for taking action a ∈ A in state
s ∈ S, and transitioning to state s′ ∈ S thereafter; T , a transition function
T : S × A × S → [0, 1] that defines the probability of transitioning to state
s′ ∈ S after taking action a ∈ A in state s ∈ S; and finally, γ ∈ [0, 1], a discount
factor of future rewards [25].

In these settings, the agent’s goal is to maximize its long-term expected
reward Gt, given by the infinite sum E[Rt+1+γRt+2+γ2Rt+3+ ...+γnrt+n+1].
Solving an MDP ideally means finding an optimal policy π∗ : S → A, that is,
a mapping that yields the best action to be taken at each state [25].

One critical difference between RL and MARL is that instead of the envi-
ronment transitioning to a new state as a function of a single action, it does so
as a function of the combined efforts of all agents.

The MDP counterpart in MARL is the Stochastic Game or Markov Game
[15], and it is defined by a tuple ⟨S,A,R, T, γ⟩, where S is a finite set of envi-
ronment states; A = [A1, A2, A3, ..., An], a set containing n sets of agent actions;
R, a reward function R : S × A1 × A2 × A3 × ...× An × S → Rn that defines
the immediate reward earned by every agent given a transition from state s to
state s′ after a combination of actions a1, a2, a3, ..., an; T , a transition function
T : S×A1×A2×A3× ...×An×S → [0, 1] that defines the probability of tran-
sitioning from state s to state s′ after a combination of actions a1, a2, a3, ..., an;
and γ, a discount factor on agents future rewards.

3 Related work

Many studies have addressed the collective action problem in mixed-motive
games [12, 14, 16, 21]. Some have tackled this problem from an agent-centric per-
spective; their solutions involve modifying an RL architecture to the specific
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needs of multiagent mixed-motive environments, eliminating the need for cen-
tralized norm enforcement. This has been accomplished in different ways, such
as allowing agents to have pro-social intrinsic motivation [12, 23, 16], coupling
agents with a reciprocity mechanism [14, 8], and deploying agents with a norma-
tive reasoning engine [19].

Conversely, we were not able to find a study within the MARL and MAS
literature that tackles this issue by adding an external agent on the role of a norm
setter. Despite that, our work resembles the AI Economist framework proposed
by Zhen et al. [28]. The framework allows the training of RL social planners, that
learn optimal tax policies in a multiagent environment of adaptable economic
actors by observing macro-properties of the system (productivity and equality).

To the best of our knowledge, none of the above studies have: a) proposed
a centralized norm enforcement solution to mixed-motive MARL using another
RL agent as a central governing authority, and b) proposed a solution that uses
only traditional RL architectures5 when retaliation is not allowed.

4 Centralized norm enforcement in MARL

Here, we propose a method for governing mixed-motive MARL making use of an
RL regulator agent. The method assumes this entity may adjust the institution-
as-norm of the system according to the ADICO grammar introduced in section
2.1.

The proposed method builds upon regular, mixed-motive MARL environ-
ments. The proposal involves enhancing the environment’s state with a 5-tuple
⟨A,D, I, C,O⟩, each letter corresponding to one of the five dimensions that make
up the ADICO framework. The environment will incorporate the ADICO infor-
mation into its states, which can be used to modify its transition and reward
functions. Note that at least one of these dimensions needs to be modifiable by
the regulator, otherwise the norm set at the beginning will remain fixed through-
out the simulation.

The method comprises two types of RL agents: n participants and a regula-
tor. Participants are simple RL agents, analogous to the ones that interact with
regular versions of MARL environments. These agents could be modeled as aver-
age self-interested RL agents with off-the-shelf architectures such as A2C [17] —
which facilitates the engineering side. When applying this method, participants
should be exposed to the full state of the enhanced environment, which means
being aware of the state of the non-enhanced environment and also the norm set
by the regulator.

The regulator, in turn, is able to operate on the environment’s norms repre-
sented by the ADICO five dimensions; it can modify one or more dimensions at
every period — a period consists of m timesteps, m being a predefined integer
value. This agent perceives the state of the environment through a social met-
ric — i.e. a system-level diagnostic — and the efficacy of its actions is signaled
5 By traditional RL architectures we mean commonly used in other RL tasks such as

A2C [17]
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back by the environment based on the social outcome of past institutions. The
regulator can also be modeled as a self-interested agent with off-the-shelf RL
architectures.

In these settings, an application of the proposed method could be run follow-
ing two RL loops; an outer one relative to the regulator, and an inner one relative
to the participants. Algorithm 1 exemplifies how these could be implemented.

Algorithm 1: Pseudocode for the proposed method
algorithm parameters: number of participants n, steps per period m;
foreach episode do

initialize environment (set the environment’s initial state s0);
foreach period do

regulator sets norm by consulting its policy πr in state sr and state
transitions to s′r;

for m/n do
foreach participant do

participant acts based on its policy πp in state sp, state
transitions to s′p, participant observes its reward rp, and
updates its policy πp;

end foreach
end for
regulator observes its reward rr and updates its policy πr;

end foreach
end foreach

5 Tragedy of the commons experiment

The method was tested on a mixed-motive environment that emulates the tragedy
of the commons problem described by Hardin (1968) [11]. The tragedy of the
commons describes a situation wherein a group of people shares a common re-
source that replenishes at a given rate. Every person has the own interest to
consume the resource as much as possible, but if total consumption consistently
exceeds replenishment, the common will soon be depleted.

5.1 Applying the method

The environment built closely resembles that of Ghorbani et al. (2021) [9] and
was built using both the OpenAI gym [1] and pettingzoo [26] frameworks. An
episode begins with an initial quantity R0 of the common resource. Every n
simulation steps — n being the number of agents; five for this simulation — the
resource grows by a quantity given by the logistic function ∆R = rR(1− R

K ), with
∆R being the amount to increase; r, the growth rate; R, the current resource
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quantity; and K, the environment’s carrying capacity — an upper bound to
resources. For this experiment, r was set to 0.3, R0 is sampled from a uniform
distribution U(10000, 30000), and K was set to 50000.

The environment also encodes the ADICO variables described in section 4.
The A, D, and I dimensions remain fixed for this experiment since a) the norm
applies to all participants, b) the norm always defines a forbidden action, and c)
participants have only one action to choose from — they can only decide how
much of the resource to consume —, and their rewards is proportional to their
consumption. The C and O dimensions, on the other hand, may be changed
by the regulator agent; that is, every m steps the regulator may change how
much of the resource a participant is allowed to consume (l) and what is the fine
applied to those who violate this condition (f(c, l, λ)). Thus the 5-tuple that
enhances this environment is made up of A: all participants, D: forbidden, I:
consume resources, C: when consumption is greater than li, O: pay a fine of
f = (ci − li) × (λ + 1), with ci being the agent’s consumption in step i; li the
consumption limit in step i; and λ, a fine multiplier. The fine is subtracted from
the violator’s consumption in the same step the norm is violated.

Before a new institution is set, the regulator can evaluate the system-level
state of the environment by observing how much of the resource is left, and a
short-term and long-term sustainability measurement, given by S =

∑t
j=t−p

rpj

cj

defined for cj > 0 and p ≥ 0, with p being the number of periods considered as
short-term and long-term — respectively one and four for this simulation —; rpj ,
the total amount of resources replenished in period j; cj , the total consumption
in period j; and t, the current period. The regulator is then able to set the
consumption limit (l) and fine multiplier (λ) for the upcoming period. At the
end of the period, the success of past institutions is feed-backed to the regulator
by the environment as a reward value directly proportional to the last period’s
total consumption.

At every simulation step, participants in the environment can observe Ri,
li, and λi, and can choose how much of the resource to consume. An agent’s
consumption may vary from 0 to cmax, where cmax is a consumption limit that
represents a physical limit in an analogous real-world scenario. Here, this value
was set to 1500. An episode ends after 1000 simulation steps or when resources
are depleted.

Agents in this simulation were built using traditional RL architectures —
SAC [10] for the regulator and A2C [17] for the participants — using the Stable
Baselines 3 framework [24], and participants were trained on a shared policy.

5.2 Results and discussion:

Figure 1 shows the 10-episode rolling average of the total consumption per
episode with and without the regulator. As predicted by the Nash equilibrium,
we notice there isn’t much hope for generalized cooperation in case selfish agents
are left playing the game by themselves — i.e. resources quickly deplete in the
beginning of each episode.
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Fig. 1. The 10-episode rolling average of the total consumption per episode for the
commons experiment. The blue line represents the consumption for when the regulator
is active and the orange line for when it is inactive.

Conversely, this is not the case when the regulator is put in place. After a
short period of randomness at the beginning of the simulation, it is possible
to note participants quickly learn to consume as much as possible, as fast as
possible — as expected in a mixed-motive normless environment. Around episode
500, the regulator learns it can increase total consumption by limiting single-
period consumption and letting resources replenish. Thus, the consumption limit
is lowered, which changes participants’ rational choice of action to abide by
the norm instead of maximizing consumption. From there on, the system is
increasingly led to a state of optimal sustainable consumption, as the regulator
learns to set the consumption limit ever so closer to the maximum replenishment
per participant, in this case, 750 units of resource.

Note the system gets relatively close to an upper consumption benchmark
by the end of the simulation — when agents’ combined consumption equals
the maximum replenishment in every iteration. We can calculate this value by
multiplying the maximum replenishment (3750) by the maximum count of re-
plenishments in a given episode (200). In this case, the value is 750000 units of
resource.

6 Conclusion

Delegating norm enforcement to an external central authority might seem counter-
intuitive at first, as we tend to associate distributed solutions with robustness.
It also might seem to go against the findings of Elinor Ostrom [21, 22], who
showed that the collective action problem could be solved without the need of
a regulatory central authority and for that, won the nobel prize in economics in
20096.

That being said, central regulation is still an important mechanism to govern
complex systems. Many of the world’s modern social and political systems use it
6 https://www.nobelprize.org/prizes/economic-sciences/2009/ostrom/facts/
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in some form or shape. With this work, we try to show that central regulation is
also a tool that could be useful in governing MAS and MARL, especially when
it is not desirable for actors in the system to punish each other.

Still, centralized norm enforcement brings about many other challenges that
are not present in decentralized norm enforcement. For instance, if poorly de-
signed (purposefully or not) the regulator himself, through the imposition norms
and sanctions, may drive the system to socially bad outcomes. What if the de-
signer behind the regulator does not have the good incentives? Constraints as
such must be taken into consideration when judging the applicability of central-
ized norm enforcement in MASs.

As further work, we plan to test this very same method in other mixed-motive
MARL environments.
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