
Computational Theory of Mind for
Human-Agent Coordination (Full)

Emre Erdogan1, Frank Dignum1,2, Rineke Verbrugge3, and Pınar Yolum1

1 Utrecht University, Utrecht, Netherlands
{e.erdogan1,p.yolum}@uu.nl

2 Ume̊a University, Ume̊a, Sweden
dignum@cs.umu.se

3 University of Groningen, Groningen, Netherlands
l.c.verbrugge@rug.nl

Abstract. In everyday life, people often depend on their theory of mind,
i.e., their ability to reason about unobservable mental content of others
to understand, explain, and predict their behaviour. Many agent-based
models have been designed to develop computational theory of mind and
analyze its effectiveness in various tasks and settings. However, most
existing models are not generic (e.g., only applied in a given setting),
not feasible (e.g., require too much information to be processed), or not
human-inspired (e.g., do not capture the behavioral heuristics of hu-
mans). This hinders their applicability in many settings. Accordingly,
we propose a new computational theory of mind, which captures the
human decision heuristics of reasoning by abstracting individual beliefs
about others. We specifically study computational affinity and show how
it can be used in tandem with theory of mind reasoning when designing
agent models for human-agent negotiation. We perform two-agent simu-
lations to analyze the role of affinity in getting to agreements when there
is a bound on the time to be spent for negotiating. Our results suggest
that modeling affinity can ease the negotiation process by decreasing
the number of rounds needed for an agreement as well as yield a higher
benefit for agents with theory of mind reasoning.

Keywords: social cognition · communication · affinity · abstraction ·
heuristics · negotiation · human-inspired computational model.

1 Introduction

Theory of Mind (ToM) is the ability of reasoning about the mental content of
other people, such as their beliefs and desires, making it possible to understand
and predict their behaviour [26, 9, 24]. Being an important part of social cog-
nition, the capability of ToM develops early in life and bestows on humans a
plethora of social skills such as negotiating, teaching, and tricking. Recursively
employing ToM provides a direct path to reason about how others use ToM,
which is widely known as “higher-order ToM” (e.g., “I believe that Alice does
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not know that Bob is planning a baby shower for her”), and is particularly
helpful for adapting to the complex dynamics of social life.

Agent-based computational models have previously been used to analyze
the effectiveness of ToM in competitive [11, 13] and cooperative [14] games and
mixed-motive situations [20, 12, 15] in which the models are based on recursive
reasoning and behaviourally limited by the complexity and rules of the games.
Baker et al. [5] model ToM within a Bayesian framework using partially ob-
servable Markov decision processes and test its performance in a simple spatial
setting. Osten et al. [25] propose a multiagent ToM model that extends the
model described in [11] and evaluates its performance in a multiplayer stochas-
tic game. Winfield [34] shows how robots can use a ToM model in improving
their safety, making decisions based on simple ethical rules, and imitating other
robots’ goals. In most of the studies around computational ToM models, the
results are generally promising and demonstrate that the use of ToM leads to
better outcomes for the studied tasks. Still, the existing models have not been
widely adopted as a computational tool in many real-life settings. We argue that
for a ToM model to be applicable, it needs to adhere to the following criteria:

Generic: Most of the existing models (see [25, 31, 11–15]) are built for a specific
game-theoretic setting in mind. The models thus are based on the rules of the
game as well as interpreted semantics of the strategies. This creates a limitation
because it is not straightforward to use these models outside of these settings.
We argue that real-life social interaction is generally more complex and for a
more comprehensive model of ToM, agents should take into account a variety of
both context-dependent and context-independent information such as traits, as
well as social frames of reference such as roles, norms, and values [29, 6]. Ideally, a
computational ToM model should be generic; i.e., independent of the particular
setting to which it is applied so that it can be used in a variety of settings.

Feasible: In general terms, ToM is about beliefs and knowledge an agent has
or can derive about the mental attitudes of other agents. Without a proper
control, the number of elements in an agent’s belief and knowledge set can in-
crease rapidly over time. This has two immediate disadvantages. First, it will
not be clear to the agent which beliefs about the other agents would be useful to
consider in a given context, leading to complex decision processes. Second, the
volume of information will make it more difficult for the agent to make fast and
accurate inferences about others. On the other hand, the agent can benefit from
a control mechanism which can sort out the relevant and important information
according to the context that the agent operates in. Thus, for a more efficient
computational model, it is necessary to ensure that the agent can abstract from
existing information to yield feasible computation of ToM.

Human-Inspired: In various social contexts, humans are known to rely on
social skills that are based on more automatic and fast-working heuristics and
require less conscious effort, such as repetition (i.e., repeating behaviours that
yield desirable results), imitation (i.e., mimic others) [19], and stereotypes [16].
These agile mechanisms can be especially helpful for humans in social interac-
tions where the time spent on reasoning and/or the cognitive resources allocated
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are vital concerns. For an agent to better explain the behaviour of humans that
it interacts with, its ToM should be human-inspired, such that it should be able
to capture and interpret the heuristics that humans use in every day dealings.

An important area where ToM could be of particular use is hybrid intelli-
gence [1], where an agent can coordinate with a human towards a particular
goal, where the agent would have varying capabilities that could complement
those of the human to yield the goal. As an example, consider a wearable phys-
ical activity monitor agent à la Fitbit that works with a human to ensure that
the human establishes a healthy life. Typical interactions with such devices take
the form of information passing, such as that the device periodically informs
the human what more she has to do (e.g., “take another 200 steps”), milestones
she has achieved (e.g., “you received a Tiger badge”); or it requests informa-
tion (e.g., “enter the foods consumed today”). Take the first type of interaction.
This necessitates the human to take an action that is not easy to do and thus
requires nudging from the agent. Ideally, if the agent could have a ToM for the
human, it could create strategies as to how to proceed with such requests. The
long-term goal of our research is thus to design and develop a generic, feasible,
and human-inspired ToM that could be applicable in such settings to improve
human-agent coordination and thus to facilitate hybrid intelligence.

As an initial step towards this goal, we develop an abstraction framework for
ToM over which we construct an abstraction heuristic. The underlying idea is
to employ an agent’s belief and knowledge set to produce a more abstract, com-
plex interaction state that can be readily used by the agent. To investigate the
principle of abstraction we use the concrete concept of affinity that summarizes
how we relate to someone based on many things we know about that person
and our history of interactions. Computational affinity captures how humans
use affinity in their interactions and can be used in tandem with ToM reasoning
when designing agent models. To demonstrate its usage and power in human-
agent interaction, we employ it in two-agent negotiation. Our results show that
capturing affinity improves agent-agent coordination and agents who perform
ToM reasoning obtain outcomes that are better than agents who do not.

The rest of this paper is organized as follows. Section 2 describes abstraction
heuristics and computational affinity. Section 3 explains our framework and how
we integrate ToM with affinity in negotiation. Section 4 evaluates our proposed
model over two-agent simulations. Section 5 discusses our results, addresses re-
lated research in the literature, and points to future research directions.

2 Abstraction Heuristics and Affinity

Humans are known to use behavioural simplification mechanisms in their decision-
making processes (e.g., stereotypes, biases) [33]. Inspired by this idea, we envi-
sion an abstraction-guided ToM agent paradigm that simplifies its beliefs and
knowledge into compact representations that can serve for heuristics. Computa-
tionally, what we call an “abstraction mechanism” is an agent apparatus that
does the following (Figure 1):
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Fig. 1: Abstraction procedure: Individual beliefs (Li) and knowledge (Kj) are
used to create abstractions Mk that are then used in interactions Sn.

1. It takes a set of beliefs and knowledge as input.

2. Using a shared prominent characteristic of such input, it produces an inter-
mediate output in the form of a simple yet more abstract belief or piece of
knowledge, or simply an abstraction, which shares the same characteristic.

3. Applying rules that govern the role of the intermediate output, it produces
interaction states for the agent to operate in.

We claim that such an abstraction procedure embedded in a ToM agent
should produce interaction states that can be used in a variety of settings, are
simple enough to easily mesh with the agent’s decision-making processes, and
capture and interpret the related human behaviour. Figure 1 shows our layered
approach to such an abstraction mechanism. The first layer holds the set of
beliefs and knowledge about others that could come from different sources, such
as observations or explicitly stated information from others. While the agent can
keep this set, it does not operate at that level but instead creates abstractions
in the second level. The first level influences the second level; thus, if the agent
observes more information at the first level, the abstractions in the second level
might change. The abstractions in the second level influence how the agents
operate in the third level. One can think of the third level as pertaining to
the application in question. Figure 1 also shows that beliefs and knowledge can
have multiple characteristics Ck, Cl, etc. which guide the production of the
corresponding abstractions Mk, Ml etc.; multiple abstractions can be used to
produce an interaction state Sn with respect to the corresponding rule Rn.

Note that abstractions are not designed to prevent agents from using their
beliefs and knowledge directly. Instead, abstractions act as additions that require
low maintenance and that are used whenever possible to avoid having to use too
much information. Here, we do not intend to provide a full-fledged abstraction
model that addresses and gives possible solutions to all kinds of challenges a
ToM agent may face during its lifetime. We will discuss some important points
that can help us further develop our abstraction mechanism in Section 5.
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2.1 Computational Affinity

We propose that in principle, this abstraction approach can be used with complex
human notions. We demonstrate our intuition in a specific type of abstraction
mechanism, which captures affinity : “a feeling of closeness and understanding
that someone has for another person because of their similar qualities, ideas,
or interests” [23]. People are inclined to get along with and gravitate to others
that are similar to them [21, 32]. One practical outcome of this feeling is gener-
ating generous behaviour: People tend to do favors for others they like [2]. We
claim that affinity can be captured within an abstraction mechanism in which
one can merge many beliefs and pieces of knowledge (e.g., “I believe that he
leads a healthy life like me.”) into a more abstract belief that shares the same
characteristic (“I believe that he is very similar to me.”) and then to an inter-
action state (“I feel a strong affinity towards him because I believe that he is
very similar to me.”) which can be more effectively used within a rule set when
making decisions (“I feel a strong affinity towards him. I can do small favors to
people that I feel strong affinity towards. Thus, I will do a small favor for him.”).

Observing a similarity is essential for affinity [7]. In our computational frame-
work, we limit similarity to interacting agents having the same opinions on a
subject and use opinions as comparable tokens that are Boolean in nature (e.g.,
healthy living is important: yes/no). Moreover, we limit observation to commu-
nication, meaning that opinions are private and unobservable unless the agent
shares them with another agent. Following this intuition, we provide three differ-
ent definitions of computational affinity that pertain to how it is brought about.
Note that the aim is not to come up with the most precise definition but with
reasonable, alternative definitions that an agent might adopt.

All definitions are based on the agents exchanging opinions. Thus, we consider
each agent A to have a set of fixed opinions on various subjects.

Definition 1. For an agent A to have a type-1 affinity towards another agent
B, at least one of the opinions B tells A must match with that of A.

The most important aspect of this form of affinity is that it is static, meaning
that after A establishes affinity towards B, even if B later tells its opinion on
another subject that does not match with that of A, A does not lose its affinity.
However, in real life, affinity is not always static; thus, we define another type
of affinity to capture its dynamic nature:

Definition 2. For an agent A to have a type-2 affinity towards another agent
B, the most recent opinion B tells A must match with that of A.

Still, affinity does not have to depend only on the latest matching opinion.
For example, agents can do multiple comparisons before establishing affinity.
Thus, we give another, more concrete way to define affinity computationally:

Definition 3. For an agent A to have a type-3 affinity towards another agent
B, the majority of opinions B tells A must match with those of A (i.e., the
number of matching opinions is bigger than zero and not smaller than the number
of non-matching opinions).



6 E. Erdogan et al.

Note that the abstraction mechanism that the agents employ is relatively
simple: Comparing just one pair of opinions is enough to produce (or change)
the abstract belief of similarity which agents further employ to decide whether
to establish affinity or not. Even with this simple mechanism, we observe that
computational affinity as an abstract entity that has a life-cycle: it is born, lives,
and dies (and can be brought from the dead again). It can be active or passive,
subject to the situation the agent is in. Plus, it holds basic information about
the relationship between agents. Depending on the communication history of
the agents, it can be reciprocal or not since both agents should tell each other
their opinions for both of them to have affinity towards the other. Other features
that we have not incorporated here can include the duration (e.g., how long it
affects the agent’s decision) and strength (e.g., how strongly it affects the agent’s
decision). Next we demonstrate how even a simple abstraction mechanism as
described can be useful in human-agent interactions.

2.2 Computational Affinity and ToM

In its core, we observe that a person who has affinity towards another person can
act in ways that would be helpful to the second person. This can mean different
things depending on the context; here we define it in a two-agent setting and as
generic as possible. In simplest terms, an agent A that has an affinity towards
another agent B can do a thing that is more favorable to B than the thing
A normally does when it does not have affinity towards B. For example, in a
negotiation, a seller A with an affinity towards a buyer B can make an offer that
is more favorable for B than the offer A makes when it does not have affinity.

In addition, we want our agents to not just establish affinity but also attribute
it as a mental state to others, as people do. Essentially, we also design agents
that have ToM about other agents and reason whether another agent has an
affinity towards a certain agent or not (e.g., “I believe B has an affinity towards
me”). The reasoning mechanism shall rely on basic perspective-taking and the
condition that both agents share their opinions (remember that affinity is not
inherently mutual). Later on, we will explain how such an agent with ToM can
also use this affinity attribution mechanism to its benefit.

In this body of work, we call the ToM agents that can have type-x affinity to-
wards others “type-x affinity agents with 1st order ToM” or shortly “Ax

1 agents”.
Similarly, we denote the agents that do not have ToM as “type-x affinity agents
with 0th order ToM” or shortly “Ax

0 agents”.

3 Negotiation with Computational Affinity and ToM

Now, we discuss how our proposed model can be used for human-agent negotia-
tion. We return to our example in Section 1 where a wearable physical activity
monitor agent is working with a human to increase the number of steps the
human takes. As the underlying mechanism, we choose two-agent negotiation,
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because it is a robust mixed-motive setting that also provides a good context for
exploring behavioural capabilities of ToM agents.

To make our setup concrete, we define an agent as an autonomous entity
which can either be an activity monitor agent or a human agent, where the
former is working to increase the number of steps taken by the human while the
human is reluctant to walk. To achieve its goal, each agent can make an offer
or accept an offer made by the other agent. Furthermore, an agent has fixed
opinions on various subjects (e.g., healthy living is important: yes/no). It can
tell the other agent its opinions, including those about the negotiation outcomes
themselves, and compare a told opinion with its own opinion (same subject).

3.1 Negotiation Framework

The subject matter of negotiation is agreeing on the number of steps to be taken.
The negotiation protocol can be briefly described as alternating monotonic con-
cession with communication, a variant of the monotonic concession protocol [30].
Basically, it is a rule set for two agents to negotiate and communicate in al-
ternating rounds. An agent can both negotiate and communicate with the other
agent in the same round in which it can either make a new offer or accept the
latest offer made by the other agent (negotiation part) and can tell the other
agent its opinions (communication part). Furthermore, negotiations should be
done in the form of monotonic concession: No agent can make an offer that
is less preferred by the other agent than an earlier offer that it made. Lastly, a
negotiation ends when an agent accepts the latest offer made or a fixed number
of rounds pass without an agreement (e.g., 10 total rounds).

Negotiating agents’ offers and counter-offers are generally governed by their
strategies: a prepared plan of action to achieve a goal under conditions of un-
certainty. The negotiation literature is rich with sophisticated strategies [27] [4].
In order to focus only on the effects of computational affinity and ToM, we opt
for a simple strategy for agents such that each agent makes an offer and adjusts
the number of steps with a constant, predetermined value until it goes beyond
the reserve value (or reserve price). For example, a human agent starts the
offer at 5000 and increases it with 100 every round until it goes beyond 55001.
We call this value of 100 the unit increment/decrement value of agents and
make all agents use this strategy as the baseline strategy when making offers.

3.2 Negotiating with Affinity and ToM

Agent A that has affinity towards another agent B can give an offer that can be
more favorable for B than the offer A gives when it does not have affinity towards
B, as we have stated earlier. More specifically, we utilize computational affinity
as a regulator for unit increment/decrement values that agents use when making
offers. As a design decision, we make reserve values not affected by affinity in
our framework. Here, we give an example.

1 In this case, for example the activity monitor agent could start with an offer of 5700
and decrease it with 100 until it goes beyond 5300.
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Table 1: Four negotiation scenarios Sc1, Sc2, Sc3 and Sc4 are given (Example 1).

(a) Opinions do not match in Sc1, but
match in Sc2. Only A tells its opinion.

Sc1 Sc2
R A B R A B

1 1500 1 1500

1 Oyes 1 Oyes

2 2100 2 2100

3 1600 3 1600

4 2000 4 1990

5 1700 5 1700

6 1900 6 1880

7 1800 7 1800

8 Accepts 8 Accepts

(b) Opinions match and A (resp. B) starts
in Sc3 (resp. Sc4). Both tell opinions.

Sc3 Sc4
R A B R A B

1 1500 1 2100

1 Oyes 1 Oyes

2 2100 2 1500

2 Oyes 2 Oyes

3 1610 3 1990

4 1990 4 1610

5 1720 5 1880

6 1880 6 1720

7 1830 7 1770

8 Accepts 8 Accepts

Example 1. A human agent A of type A1
0 and an activity monitor agent B of

type A1
0 are negotiating. The reserve values of A and B are set to be 1850 and

1750, respectively. Their respective unit increment/decrement values are both
100 and affinity increases it with 10. Each agent has a Boolean opinion on the
same subject O: It can be either Oyes or Ono. In Tables 1a and 1b, we give four
different scenarios (Sc1, Sc2, Sc3, and Sc4).

Example 1 depicts two crucial points. First, affinity does not always produce
a different result (e.g., Sc1 and Sc2) and second, either agent can benefit from
the result when affinity is reciprocal (e.g., Sc3 and Sc4), since the final situation
depends on other factors as well (e.g., the reserve values, the starting agent).
Additionally, one can see that although reciprocal affinity introduces variance in
the agreements (e.g., Sc3 and Sc4 in which the accepted offers are 1770 and 1830,
respectively), it stays the same on average (e.g., 1800) due to the symmetry in
the provided benefits for both agents.

In the previous section, we have noted that an Ax
1 agent can use its ToM abil-

ity to its benefit when making offers. In particular, when an Ax
1 agent concludes

that there is a mutual affinity, it can change its unit increment/decrement value
so that its offer adjustments (not offers themselves) are not as generous as its
opponent’s adjustments. For example, if an Ax

1 activity monitor agent decides
that there is a mutual affinity and observes that its opponent’s current increment
value (i.e., the difference between the latest two offers of the opponent) is 110, it
can change its own to a value lower than 110, say 105. With this improvement,
it is guaranteed that a reciprocal affinity between an Ax

1 and an Ay
0 will result

in an offer that Ax
1 prefers more than Ay

0. Here, we give an illustrating example.

Example 2. A human agent A of type A1
1 and an activity monitor agent B of

type A1
0 are negotiating. The reserve values of A and B are set to be 1850 and
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Table 2: Two negotiation scenarios Sc5 and Sc6 are given for A and B. Both tell
their opinions in both scenarios (Example 2).

Sc5: Opinions match, A starts. Sc6: Opinions match, B starts.

R A B R A B

1 1500, Ono 1 2100, Ono

2 2100, Ono 2 1500, Ono

3 1610 3 1990

4 1990 4 1605

5 1715 5 1880

6 1880 6 1710

7 1820 7 1770

8 Accepts 8 Accepts

1750, respectively. Their respective unit increment/decrement values are both
100. Affinity increases it by 10 but mutual affinity increases it only by 5. Each
agent has a Boolean opinion on the same subject O: It can be either Oyes or
Ono. In Table 2, two different scenarios (Sc5 and Sc6) are given.

One can notice in Example 2 that Ax
1 is designed to limit its own affinity-

induced generousness using ToM. The superiority of Ax
1 over Ax

0 can be seen in
the newly introduced asymmetrical variance in the agreements (e.g., Sc5 and
Sc6 in which the accepted offers are 1770 and 1820, respectively) and the new
average (e.g., 1795 < 1800), benefiting Ax

1 agent A more than Ax
0 agent B.

4 Experiments and Results

We are interested in understanding the role of affinity in getting to agreements
when there is a bound on the time spent for negotiating. To answer this general
question in detail, we have created an experimental setup with four simulation
experiments. We configure our negotiation framework (including the reserve val-
ues, starting offers, and unit increment and decrement values) so that an agree-
ment can be achieved in a maximum of 12 rounds, even without affinity. In all
simulations, activity monitor agents’ and human agents’ starting offers are set
to 2000 and 1000 and reserve values are 1450 and 1550, respectively. Unit in-
crement and decrement values are both set to 100 at the beginning and it is
common knowledge that agents do not decrease these values below 100 (agents
can increase them in case of affinity). The worst offer an agent can make for itself
is with its reserve value. A negotiation begins with two newly created agents,
namely, an activity monitor agent and a human agent, where every opinion of
agents is created randomly: it can be a “yes” or “no” with the same probability.
One of the agents is randomly chosen to start the process and the other agent
continues accordingly. In the first two rounds, each agent gives its starting offer.

There are two additional restrictions in the protocol we use. First, an agent
tells all of its opinions in the negotiation process. Second, opinions are told in a
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pre-arranged order (i.e., subject 1, subject 2, subject 3...) where an agent tells
only one opinion per round in a conversational flow. This is because we intend to
keep the communication as simple as possible and do not want to analyze how
different communication patterns affect the life-cycle of affinity. We also want to
ensure that affinity can be formed reciprocally in the negotiations.

Every round, an Ax
0 agent first checks if the latest offer is acceptable. If yes,

it accepts and ends the negotiation. If not, it compares the shared opinion(s) to
check whether affinity ensues or not, following the criteria of its affinity definition.
If it does not establish affinity, it gives an offer that is 100 higher (resp. lower)
than its previous offer, if it is a human (resp. activity monitor) agent. On the
other hand, if the agent establishes affinity, it changes 100 to a multiple of 5
between 100 and 150 (including the boundaries) and makes an offer accordingly.
Then, it ends its turn by telling one of its opinions according to the sharing
order until all are shared. We introduce this randomness into Ax

0 agent’s offer-
making mechanism to make it more dynamic. It is worth to note that this can
also indirectly change the agent that gives the final offer.

Every round, an Ax
1 agent also checks if the latest offer is acceptable. If yes,

it accepts and ends the negotiation. If not, it compares the shared opinion(s) to
check whether affinity ensues or not, following the criteria of its affinity defini-
tion. Additionally, it also decides whether the other agent has established affinity
or not. If the Ax

1 agent does not establish affinity or decides that its opponent
does not have affinity, it gives an offer that is 100 higher (resp. lower) than its
previous offer, if it is a human (resp. activity monitor) agent, like Ax

0 agents. Oth-
erwise, it changes 100 to a multiple of 5 between 100 and X (including X) and
makes an offer accordingly, where X is equal to the difference between the latest
two offers of its opponent (i.e., the opponent’s currently observed unit incre-
ment/decrement value). It ends its turn by telling one of its opinions according
to the sharing order until all are shared. Again, we introduce this opponent-
dependent randomness into the offer-making mechanism of an Ax

1 agent to make
it more dynamic and limit the agent’s own affinity-induced generousness.

There are four different experimental variations in which we use only A1
m

(V1), only A2
m (V2), only A3

m (V3), and all types of agents (V4), where m ∈
{0, 1} unless told otherwise. Every experimental variation consists of four differ-
ent opinion settings: In the n-opinion setting, every agent has n opinion(s) on
the same n subjects, where n ∈ {1, 2, 3, 4}. Per setting, we perform simulations
with 10, 000 different agent pairs where every agent negotiates once.

4.1 The Effect of Affinity on Agreements

In the first experiment, our aim is to find how affinity affects the number of
agreements made when A1

0, A
2
0, and A3

0 agents negotiate with each other (V4).
An agent is created as an A1

0, A
2
0, or A

3
0 agent with the same probability. We limit

the maximum number of rounds of negotiation to 12. Through the simulation,
we also keep track of the final rounds in which agreements are settled.

The stacked bars in Figure 2a show the number of successful negotiations
that are done by Ax

0 in the simulation. All different opinion settings are given



Computational Theory of Mind for Human-Agent Coordination (Full) 11

(a) Affinity conceives early agreements. (b) Agreements and affinity types (all Ax
0).

Fig. 2: Affinity helps coordination.

in the x-axis (i.e., 0-4), while the y-axis shows the total number of achievable
agreements; colors and hatches together represent the final round information of
the agreements (i.e., 8-12).

When no opinion is shared, all 12 rounds are necessary for reaching an agree-
ment in all simulations. However, even sharing one opinion makes a big difference.
We can see in Figure 2a that nearly half of the agreements are done in 10 rounds
in the 1-opinion setting. Other settings also show similar results: The number of
agreements that need 12 rounds decreases when the number of shared opinions
increases. Hence, we can conclude that when Ax

0 agents negotiate, the number of
agreements that are settled on earlier than 12 rounds increases with the number
of shared opinions. This shows that by modeling affinity explicitly, the agents
can reduce the number of interactions needed to agree.

4.2 Affinity Types and Agreement Rates

In the second experiment, our aim is to find how affinity type and number of
shared opinions affect the number of agreements made when Ax

0 agents negotiate.
The experiment consists of the first three variations V1, V2, and V3. We limit the
maximum number of rounds of negotiation to 10 to get a better understanding
of how different affinity types get to early agreements.

The line plots in Figure 2b show the percentage of successful negotiations
that are achieved by Ax

0 in 10 rounds over all negotiations per affinity type.
When no opinion is shared, the number of agreements that can be achieved

in 10 rounds is zero. Figure 2b shows that for the experiment’s V1 variation
with 1-opinion setting, we can see that agents sharing just one opinion makes a
significant difference in the number of agreements. When A1

0 agents negotiate,
nearly 0.50 of all simulations end with an agreement. The number increases to
0.68 and 0.75 for 2-opinion and 3-opinion settings. This increase can be explained
by the fact that when the agents exchange more opinions, the probability of
finding a negotiating agent pair that has at least one matching opinion increases.
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(a) Ax
0 vs. Ax

1 . (b) All Ax
1 .

Fig. 3: Agreement rates depend on both ToM and affinity type.

In the 4-opinion setting, however, it does not go higher since we set hard limits
on the unit increment/decrement values and also due to the overall randomness
in the agent creation and offer-making procedures. Thus, it shows that Type-1
affinity affects the agents in such a way that the number of agreements made
increases more slowly when the number of rounds is fixed.

When A2
0 agents negotiate, we see a different pattern. For every opinion set-

ting of the experiment’s V2 variation, nearly 0.50 of all simulations end with an
agreement. This is mainly because Type-2 affinity is not static like Type-1 affin-
ity and every agent can lose its affinity during the opinion comparison process.
Thus, Type-2 affinity affects and changes the average unit increment/decrement
value that an agent uses before reaching an agreement, but not as much as Type-
1 affinity. On the other hand, A3

0 agents generate a different pattern that is a
mixture of the previous ones. Excluding the 0-opinion setting, the agreement
rate in the experiment’s V3 variation is on average greater than 0.5 but not as
much as the average we see in V1. Hence, we can say that Type-2 and Type-3
affinity types do not create agreements as much as Type-1 affinity.

4.3 Roles of ToM and Affinity in Agreements

In the third (resp. fourth) experiment, our aim is to find how ToM reasoning and
affinity together affect the number of agreements made when human agents of
type Ax

0 (resp. Ax
1) and activity monitor agents of type Ay

1 negotiate. Both exper-
iments consist of variations V1, V2, and V3, similar to the second experiment.
The maximum number of rounds is set to 10.

The line plots in Figure 3a (resp. Figure 3b) show the percentage of successful
negotiations that are achieved by Ax

0 (resp. Ax
1) human agents and Ay

1 activity
monitor agents in 10 rounds over all negotiations per affinity type.

Comparing with Figure 2b, Figure 3a shows a general decrease in the agree-
ment rates by shared opinions and affinity types. For example, when Ax

0 human
agents negotiate with Ay

1 activity monitor agents, nearly 0.40 of all simulations
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end with an agreement in the 1-opinion setting, instead of 0.50. This number
increases up to 0.60 for the 4-opinion setting which is lower than the correspond-
ing agreement rate given in Figure 2b (0.76). The drop in the agreement rates
is drastic when Ax

1 human agents negotiate with Ax
1 activity monitor agents, as

plotted in Figure 3b. This is on par with what we have expected from the nego-
tiating behaviour of ToM agents since it is affected by opponents’ offer-making
behaviour as well: ToM can have a relatively negative effect in the number of
agreements when the number of rounds is fixed.

We have done additional simulations to provide more depth to the negoti-
ations in which ToM agents negotiate with agents that do not have ToM. In
Figure 4a, we analyze Ax

0 -A
y
1 negotiations where all affinity types are used and

only one opinion is shared. The x-axis shows the number of agreements done in
10 rounds and the y-axis shows the agreeable offer range (1450-1550). We can
see more agreements on the right side of the figure (> 1500) than the left side
(< 1500), implying that Ay

1 activity monitor agents end up with offers that are
on average better for them (the average offer is approximately equal to 1512). In
Figure 4b, we analyze how an increase in the number of shared opinions changes
this asymmetrical benefit. Every line plot shows how number of agreements cor-
relates with the final offers in a specific opinion setting. We can see that the
Ax

0 human agents in many-opinion settings end up with better offers on average
than the Ax

0 human agents in few-opinion settings (still not better than their Ay
1

monitor agent counterparts). It shows that when more opinions are shared, the
superiority of ToM agents over non-ToM agents decreases in negotiations where
we explicitly model affinity. This emergent phenomenon reminds us that it is not
so easy to develop and maintain affinity with sheer communication (i.e., it also
needs a strategy) and it is even harder to benefit from it (i.e., ToM’s advantage
diminishes).

(a) Ay
1 benefit more than Ax

0 . (b) ToM’s benefit decreases with opinions.

Fig. 4: ToM with affinity benefits agents.
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5 Discussion and Future Work

Within our computational ToM framework, founded on the abstraction mecha-
nism defined in Section 2, we propose a human-inspired heuristic called compu-
tational affinity for agents to improve coordination in hybrid interactions. We
use agents to simulate a human-agent negotiation in the context of activity mon-
itoring. Our findings demonstrate that explicitly modeling affinity can ease the
agreement process. We show how sharing more information can also help the ac-
tivity monitoring agents forge more agreements, albeit depending on the agent’s
affinity type. Our results indicate that when negotiating with human agents that
do not have a ToM, activity monitoring agents that have a ToM end up with
agreements that is more favorable to them than to their opponents. Although the
communication part of negotiations needs further analysis and strategies on its
own [27], the results provide the motivation to develop more sophisticated ToM
agents that can generate affinity and benefit from it, and test them in real-life
negotiations to see if and how they can improve human-agent coordination.

Research on computational ToM models suggests that ToM reasoning ben-
efits agents in different ways and even more in the higher orders. De Weerd et
al. [11] show that agents benefit from higher-order ToM reasoning in competitive
game-theoretic settings, although with diminishing returns beyond third-order
ToM. Further, they investigate how higher-order ToM can be beneficial for agents
in a strictly cooperative game [14] and show that communication can be set up
more quickly when agents beyond zero-order ToM play the game. De Weerd et
al. [15] determine to what extent agents benefit from higher-order ToM reasoning
in a mixed-motive situation called the “Colored Trails”. The results indicate that
there is a considerable benefit in using second-order ToM; however, first-order
ToM has a limited effectiveness. Kröhling and Mart́ınez [20] investigate the role
of ToM in single-issue negotiations between “context-aware” agents where the
negotiation context is modeled by two variables, summarized as necessity and
risk. Görür et al. [17] propose a ToM agent model for estimating humans’ inten-
tions in a shared human-robot task. Brooks and Szafir [8] show how robots can
create second-order ToM models by using humans’ actions in spatial settings.

Observing and communicating are crucial components of human social be-
haviour. Our long-term goal is to design socially intelligent agents that can un-
derstand how humans “tick” and work with them in synergy. Computationally
modeling ToM ability with the abstraction heuristics that we defined in Section 2
is a first step toward this goal. Unlike the studies we mention above, we design our
human-inspired abstraction procedure to be as generic as possible and generate
interaction states which emulate how humans develop and maintain the mental
states they experience through their lives. The procedure also provides a use-
ful simplification technique for abstracting information for social agents to yield
feasible ToM models of humans they interact with. Affinity, which is essentially
based on abstracting observed and communicated similarities, is one particular
interaction state we use in this paper. It presents a good starting point, being
a human mental state which is also a valuable heuristic in decision-making, and
inspires us to computationally formalize other useful interaction states as well.
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As a follow-up work, we aim for a more complete model that captures the
ways humans abstract their beliefs and knowledge. We will start with a formal-
ization from tip to toe (i.e., beliefs, abstractions, procedure etc.). For that, we
need to answer a couple of fundamental questions such as which beliefs to use
when abstracting, when to stop the procedure, what to do in case of a belief
update, and which interaction states to activate after abstracting. In addition to
these issues, a ToM agent should also be able to correctly attribute this abstrac-
tion process to others. As we aim to design higher-order ToM agents that can
also take into account how their own artificial minds are perceived by others, we
plan to benefit from mind perception theory [18, 22] when investigating the roles
of observation and communication in recursive ToM reasoning. Additionally, we
consider benefiting from value-based reasoning [28, 10, 3] to develop agents that
takes others’ values into account when doing ToM reasoning. With a more com-
prehensive, formalized model, we will further analyze how affinity can be used
within other negotiation and communication protocols and strategies as well as
get a broader view of its effects in multi-issue negotiations.
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