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Abstract. Agents in Multi-Agent Systems (MAS) are not always built
and controlled by the system designer, e.g., on electronic trading plat-
forms. In this case, there is often a system objective which can differ
from the agents’ own goals (e.g., price stability). While much effort has
been put into modeling and optimizing agent behavior, we are concerned
in this paper with the platform perspective. Our model extends Stochas-
tic Games (SG) with dynamic restriction of action spaces to a new self-
learning governance approach for black-box MAS. This governance learns
an optimal restriction policy via Reinforcement Learning.

As an alternative to the two straight-forward approaches—fully central-
ized control and fully independent learners—, this novel method com-
bines a sufficient degree of autonomy for the agents with selective re-
striction of their action spaces. We demonstrate that the governance,
though not explicitly instructed to leave any freedom of decision to the
agents, learns that combining the agents’ and its own capabilities is
better than controlling all actions. As shown experimentally, the self-
learning approach outperforms (w.r.t. the system objective) both “full
control” where actions are always dictated without any agent autonomy,
and “ungoverned MAS” where the agents simply pursue their individual
goals.

Keywords: Multi-Agent System · Governance · Self-Learning System ·
Reinforcement Learning · Electronic Institution.

1 Introduction

1.1 Motivation

Multi-Agent Systems (MAS) are widely used as a general model for the interac-
tion of autonomous agents, and have been applied to a vast range of real-world
settings, for example Algorithmic Trading [1], Traffic Management [33], and
Multi-Player Video Games [25] (see [42] for a recent survey of MAS applica-
tions).
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Example 1. Consider a stock market where high-frequency trading algorithms
typically generate the vast majority of orders. Obviously, agents in this setting
act autonomously and in a self-interested manner in order to maximize their
profit. As is known, this behavior leads to problems like high volatility and ex-
treme stock price behavior [26]. It is therefore crucial for regulators to provide
both stability (i.e., ensure that extreme price movement flash crashes will not
happen) and opportunity (i.e., ensure that investors can still use intricate, pro-
prietary strategies to make profit).

In this example—as in many other applications areas—the agents cannot (or
should not) be fully controlled, but must have a sufficient degree of freedom
regarding their actions. At the same time, some level of control needs to be
imposed on the agents such that a system objective can be achieved.

The scope of this paper is therefore a subclass of MAS with three more as-
sumptions, inspired by the concept of Electronic Institutions (EI) [4] as described
in Sec. 2:

(a) The agents are truly autonomous entities whose goals and strategies cannot
be known (“black boxes”), but only observed through their actions,

(b) in addition to the agents’ individual goals, there is a system objective which
does not necessarily coincide with any of the former goals, and

(c) agent actions can be restricted by a governance which has the power to
enforce such restrictions.

We propose a novel approach to governing an MAS which combines the re-
striction concept of EI with dynamic rule-setting, provided by a Reinforcement
Learning (RL) component (the governance). This governance observes the public
information of the MAS, i.e., actions and transitions, and learns optimal restric-
tions, which depend on the system state and the respective agent’s observation.

A common method for governing agents in an EI is the use of norms with
a focus on rewards and sanctions as the means of influencing agent behavior,
while the action space itself is not affected. This makes two essential assump-
tions about the agents: First, “the effectiveness of these norms depends heavily
on the importance of the affected social reality for the individual” [6], and sec-
ond, the normative awareness needs to be comparable for all participating agents
(interpersonal utility comparison). For unknown agents, we argue that these as-
sumptions cannot be expected to hold true, which is why we base our governance
on (mandatory) restrictions of the agents’ action sets. The dynamic nature of
the rule-setting process (rule synthesis) is due to the fact that agents themselves
can act strategically and are therefore able to exploit any static rule set.

Of course, the governance’s “power to restrict” requires some sort of physical
control over the MAS. This requirement is satisfied in a wide range of applica-
tions, for example by any digital platform where agents are software components,
and actions are chosen by exchanging messages. Therefore, we assume the ad-
herence to restriction to be given in this work.
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1.2 Illustration of the Governance Approach

The simultaneous execution and learning of a Governed Multi-Agent System
(GMAS) is shown in Fig. 1 (see the formal model in Sec. 3 for the definition and
explanation of the variables, and Algorithm 1 for the actual run-time loop). The
governance is used, i.e., its restriction policy is queried, at every execution step
of the MAS to determine the set of allowed and forbidden actions, whereas the
learning happens in between those execution steps.

In each learning step, the governance optimizes its restriction policy in order
to maximize the system objective, given the observation of the last step. At the
same time, the agents can update their own action policies, but this is not part
of the GMAS (black-box agents).

Fig. 1. Sequence of execution and learning steps in a Governed Multi-Agent System

1.3 Contribution

We show in this paper how a self-learning governance with the ability to restrict
action spaces can add value to an MAS. This is demonstrated by comparing its
performance to two natural alternatives (see also [37]):

– Ungoverned MAS (UMAS), in which the agents alone decide on their actions,
such that coordination or cooperation (if any) evolves on its own, and

– Fully Controlled MAS (FMAS), where the governance prescribes all agent
actions, leaving no room for autonomous decisions.

The main contributions of this work are: We give a formal definition of a
Governed Multi-Agent System (Sec. 3), we conceptualize an RL governance for
this model, analyzing the assumptions made in the model and describing the
governance’s learning behavior (Sec. 4), and we present experiments (Sec. 5) to
demonstrate that this method can significantly outperform both alternatives:
UMAS and FMAS.

2 Related Work

Most MAS literature focuses on the agents’ perspective, attempting to improve
their learning behavior [32, 35]. The underlying model, the Stochastic Game
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(SG), is both an extension of a Markov Decision Process (MDP) to multiple
agents, and an extension of a Normal-Form Game to multiple states. Hence,
methods from both Stochastic Processes and Game Theory have been adapted
to this setting. Both in Game Theory and in Machine Learning, it is very com-
mon to assume discrete time steps and therefore a synchronized interaction be-
tween agents. We will make use of this assumption for the interaction between
environment, agents and governance (see Sec. 3).

For a single-agent (stationary) MDP, the most common approach—Reinforce-
ment Learning—includes a variety of algorithms which have been proven to
converge to an optimal strategy [38]. What makes it hard to transfer these algo-
rithms to multi-agents settings is the fact that the rewards and transitions in an
SG depend on the joint action of all agents, making the system non-stationary
from the perspective of each agent. Coming from the game-theoretic side, the
extension of solution approaches for normal-form games (mostly based on the
notion of equilibrium strategies) to SG is no less challenging.

Nevertheless, there have been many successful approaches to the Multi-Agent
Learning problem by introducing new concepts for equilibria (e.g. correlated
equilibria [19] and cyclic equilibria [43]) or by making additional assumptions:
Among others, agents can learn optimal strategies if all agents receive the same
rewards (Team Markov Games [39]), if the game is a Zero-Sum Game [23], if all
opponents are stationary [13], or if the “rate of non-stationarity” is bounded by
a variation budget [12]. The general problem of finding an optimal strategy in a
model-free, general-sum SG, however, is still an open challenge [42].

As a consequence, researchers have introduced additional support for the
learning agents. This support can be either restricted to the interaction between
the agents, or it can involve another entity besides the agents.

For the first type, agents are usually allowed to exchange additional infor-
mation in order to find optimal strategies [21, 11] (see also the recent MARL
surveys of Zhang et al. [42] and Gronauer and Diepold [20]).

The second type relies on non-agent components to solve the learning prob-
lem: In its most general notion, the concept of Environment-Mediated Multi-
Agent Systems (EMMAS) states: “When designing a system that is based only
on local interactions in the environment and the emergent properties resulting
from these interactions, it is a difficult research problem on the one hand to
obtain the required global behavior of the system and on the other hand to
avoid undesired global properties”, and therefore suggests to “off-load some of
the agent complexity into the processes of the dynamic agent environment” [40].

Electronic Institutions (EI) [30, 16] provide an institution as the entity which
regulates agent interactions, among many other features. The framework con-
tains an “implementation of the control functionality of the institution infras-
tructure [which] takes care of the institutional enforcement”, which can refer
to both norms—which can be violated—and enforced rules. While these two
terms are not always used consistently, we use here the convention that rules are
“norms that can be effectively controlled and thus enforced, such that violation
is impossible” [27].
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The EI framework itself does not only describe rule-setting capabilities, but
also Agents, Roles, a Performative Structure, and Normative Rules, among oth-
ers [16]. The same holds for alternative models for social coordination, e.g.,
ANTE [24], or INGENIAS [18] ([3] includes details of all these frameworks).
However, we use only one feature of EI: The ability to restrict the space of
available actions for the participating agents. This has been described as an im-
portant part of an EI by Esteva et al.: “An electronic institution defines a set of
rules that structure agent interactions, establishing what agents are permitted
and forbidden to do” [15]. Aldewereld et al. emphasize that “organisational ob-
jectives are not necessarily shared by any of the individual participants, but can
only be achieved through their combined action” [3], and that “one cannot make
any assumptions about the inner workings of participants. [...] Rather, external
aspects of the participants (actions, interactions, etc.) have to be leveraged to
create the required coordination structures” [3].

Norms are a very common approach for achieving system goals in MAS. The
distinction between norms and rules (“[Norms] are a concept of social reality [...]
Therefore, it is possible to violate them” [6]) has been made many times in the
literature; they have been called “social conventions” and “explicit prescriptions”
[14], “legalistic view of norms” and “interactionist view of norms” [9], “norms”
and “regimented norms” [6], or “norms” and “hard constraints” [17, 27].

Normative Multi-Agent Systems (NorMAS) [14, 8] embrace the idea that
agent communities can self-regulate their interactions without a controlling force.
Therefore, the field focuses on (violable) norms, their creation or emergence, ob-
servation, revision, adherence or violation, and sanctioning mechanisms. How-
ever, this requires the two assumptions mentioned in Sec. 1.1: Norm-awareness
and inter-agent utility comparability. In our opinion, these requirements do not
hold for black-box agents with individual goals (“How to deal with a lack of nor-
mative awareness and if it is being considered, how to check the lack of normative
awareness if an agent’s knowledge base is not accessible?” [6]). In consequence,
our focus lies on the other type of institutional enforcement: Rules for allowed
and forbidden actions.

The original implementation of EI (and its development environment EIDE
[31]) envisaged a clear distinction between rule/norm creation at design-time
and agent interaction at run-time (i.e., all rules/norms are given independently
of the agents and do not change during execution). A logical next step was
the Autonomic Electronic Institutions (AEI) approach [10, 5]: Acknowledging
the fact that static norms are not always sufficient for dealing with self-adapting
agents, it moved norm creation from the design time to the run-time and allowed
for dynamic changes. EI was therefore extended to include an evolutionary norm
adaptation mechanism (e.g., a genetic algorithm). As we will see later, this is
somewhat similar to our governance (defining and updating institutional rules
at run-time).

Like Multi-Agent Learning in general, normative capabilities in MAS can
either be part of the agents [34], or part of an additional entity [2] (or both).
While early work defined static norms at design-time [37, 7], the field has since



6 M. Oesterle et al.

evolved towards run-time norm creation, synthesis and adaptation [28], applying
methods like Automated Theorem Proving [29] or Deep Learning [2] to NorMAS.

This development towards dynamic norm creation and adaptation has, to
our knowledge, not yet been examined for rules (i.e., hard constraints). In this
paper, we fill the gap by demonstrating that dynamic rules do have the potential
to enhance the capabilities of an MAS. Moreover, the RL approach employed
here for the governance component is shown to be well-suited for on-line learning
of a restriction policy in an environment where the agents and their behavior
can only be observed from outside.

3 Model

3.1 Notation

Vectorized Variables Let S be a set, and I be an index set. A single variable
s ∈ S is written in regular face, whereas a vector s = (si)i∈I ∈ SI is
written in bold face. The index set is usually omitted when the context is
clear. Variables that change over time always have the current time step as

a superscript, as in s(t) or π
(t)
i .

Categorical Distribution Given a finite set S, ∆(S) denotes the set of all
discrete probability distributions over S, i.e., the set of all functions p : S →
[0, 1] with

∑
s∈S p(s) = 1.

Image and Support Let f : A → B be a function. Then im(f) := {f(x) : x ∈
A} is the image of f . If B = R, supp(f) := {x ∈ A : f(x) ̸= 0} is the support
of f .

3.2 Multi-Agent System

Consider a Partially Observable Stochastic Game (POSG) over discrete time
steps t ∈ N0, i.e., a 7-tuple (I,S,O,σ,A, r, δ) with agent set I = {1, ..., n}, state
set S, observation set O, observation functions σi : S → O∀i ∈ I, fundamental
action set A with k := |A| ∈ N, agent reward functions ri : S × AI → R ∀i ∈ I
and a probabilistic transition function δ : S ×AI → ∆(S).

Each agent has an (unknown) stochastic action policy πi : O × 2A → ∆(A)
which defines its behavior. These policies take as input not only the agent’s
current observation, but also a set A ⊆ A of allowed actions. Referring to the
assumption of non-violable rules (see Sec. 1.1), we take as a given that forbidden
actions are never chosen, hence suppπi(s,A) ⊆ A ∀i ∈ I, s ∈ S.

An action policy is called static if it is constant in t; otherwise it is called
dynamic. Note that a static policy π can still be non-deterministic, since the
concrete action is sampled from the categorical distribution π(o,A) ∈ ∆(A).

3.3 Governance

The governance component returns a set A ⊆ A of allowed actions when given
an input pair consisting of the overall environmental state and an agent’s ob-
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servation. This function is called the governance policy πG : S × O → 2A. Note
that the set of allowed actions can never be empty, i.e., ∅ /∈ im(πG).

In contrast to a standard MAS, where the environment provides all the input
for the agents’ action policies, there is now an intermediary step in which the
governance computes the set of allowed actions for each agent, which is then
passed to the agent’s policy in addition to its observation.

The system objective is given as a reward function rG : S × AI → [0, 1],
allowing the governance to directly measure the success of its restrictions af-
ter each environment step. The normalized range of rG is chosen for ease of
comparability.

Definition 1. A Governed Multi-Agent System (GMAS) is the 9-tuple

(I,S,O,σ,A, r, δ, πG, rG) .

The governance is a centralized controller insofar as it observes the entire
MAS and defines restrictions in a centralized way. However, the fundamental
difference to the usual notion of “centralized control” is that the governance
leaves a substantial amount of autonomy to the agents. This is not enforced by
its design, but emerges naturally: The synergy between the governance’s and the
agents’ capabilities gives a performance advantage over full control, causing the
governance to allow multiple actions at most times (see Sec. 5).

3.4 Sequence of Actions in a GMAS

Environment

Governance Agents

s, rG
o

r

A

a

1 1 1

2

3

s ∈ S: Environmental state

rG ∈ R: Governance reward

o ∈ OI : Agent observations

A ⊆ AI : Allowed actions

r ∈ RI : Agent rewards

a ∈ AI : Agent actions

Fig. 2. Execution Step of a GMAS

Fig. 2 shows the exchange of
data in one execution step (see
Fig. 1) of a GMAS: The en-
vironment provides the agents
with their respective rewards
and observations, while passing
to the governance the environ-
ment state, the governance re-
ward and agent observations 1 .
The governance then calculates
the sets of allowed actions for
each agent, and passes them to
the respective agent 2 . Finally,
the agents choose their actions
and communicate them back to
the environment 3 which exe-
cutes the transition. For simplicity and clarity of presentation, all n queries
to the governance have been wrapped up into one arrow.

In pseudocode (see Algorithm 1), the run-time loop is very similar to the
standard execution of an RL environment (e.g., in OpenAI Gym), with an ad-
ditional governance step.
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Algorithm 1: Run-time loop of a governed MAS

Data: GMAS G =
(
I,S,O,σ,A, r, δ, π(0)

G , rG
)

Choose initial environmental state s(0) ∈ S ;

for t ∈ {0, ..., T} do
// Execution step

for i ∈ I do

o
(t)
i ← σi(s

(t)) // Compute agent observation from state

A
(t)
i ← πG(s

(t), o
(t)
i ) // Get allowed actions from governance

a
(t)
i ← πi(o

(t)
i , A

(t)
i ) // Get chosen action from agent

end

r(t) ← r(s(t),a(t)) // Get rewards

s(t+1) ← δ(s(t),a(t)) // Execute transition

// Learning step

π
(t+1)
G ← train(π

(t)
G ) // Train governance

for i ∈ I do

π
(t+1)
i ← train(π

(t)
i ) // Train agent

end

end

3.5 Degree of Restriction

There is a natural trade-off between achieving the system objective and preserv-
ing agent freedom: The more actions the governance forbids, the higher its level
of control over the agents—in the extreme case, only a single action is allowed
for any given observation, resulting in a fully deterministic trajectory. On the
other end of the spectrum, the governance always allows all actions, reducing
the GMAS to an ordinary MAS.

It is therefore reasonable to measure the degree of restriction, i.e., the percent-
age of forbidden actions, and to assess this metric in relation to the governance’s
performance:

Definition 2. For an individual agent i ∈ I and time step t ∈ N0, the degree
of restriction is defined as

ρ
(t)
i := 1−

∣∣πG

(
s(t), oi

(
s(t)

))∣∣
|A|

∈ [0, 1] .

The overall degree of restriction ρ(t) := 1
n

∑
i∈I ρ

(t)
i is simply the mean over

all agents. The higher the degree of restriction, the lower the autonomy of the
agents.

It should be noted that real-world agents oftentimes cannot choose every
action at every step. Instead, only a subset of actions is feasible, depending on
the environmental state (parametric action spaces). In this case, the degree of
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restriction should be defined as the ratio between forbidden actions and feasible
actions.

4 Model Analysis

4.1 Fairness

Agents who make the same observation o ∈ O at a time step t are always
allowed to perform the same actions πG

(
s(t), o

)
. This is in line with a common-

sense definition of fairness: The governance treats all agents the same way. To
achieve this, learning (i.e., a change of the governance policy) cannot take place
within a time step, but only after all agents have been given their action sets.

4.2 Learning

The GMAS model does not specify any particular learning algorithm, but only
requires a governance policy πG to be available for querying at all times. The
restriction policy can be any function S × O → 2A, but, of course, the gover-
nance’s goal is to find a restriction policy which maximizes the reward rG, given
the agents’ behavior. Since the governance interacts with the ungoverned MAS
in a cycle of information, reward and action, RL seems to be the natural way to
optimize this policy.

From this perspective, the governance itself is a Reinforcement Learning
agent which acts on the entire MAS as its environment: The governance in-
teracts with the MAS environment and the agents, but only sees how its own
actions (i.e., defining sets of allowed actions) influence its reward and the en-
vironmental state. Therefore, it can be treated as a reinforcement learner with
action policy πG and reward rG. Its environment has the transition function

δ′ : S ×
(
2A

)I → ∆(S) with δ′(s,A) := δ (s,π(σ(s),A)), which is a composition
of observation functions σ, agent policies π and MAS transition function δ.

δ′ is not explicitly known to the governance, such that a model-free algorithm
must be used. Moreover, since the governance policy is the action policy of the
governance, standard model-free RL algorithms like A3C, DQN or PPO can
be directly applied. The governance is structurally equivalent to a multi-label
classifier: Its policy outputs a subset of the (finite) fundamental action set. Thus,
specialized network architectures for this type of classifier could also be applied
in order to build a more effective governance policy.

Since agents can (and probably will) change their behavior according to the
current restriction policy, a GMAS is inherently dynamic and therefore an on-
line learning problem: Both sides (agents and governance) react to the other
side’s actions and strategies by continuously adapting their own action policies.
The initial restriction policy can be a random function, or it can be set to simply

allow all actions, i.e., π
(0)
G (s, o) := A ∀s ∈ S, o ∈ O. At run-time, the governance

needs to learn continuously in order to keep up with changing agent behavior.
Therefore, there is no distinction between traning and evaluation as in classical
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RL, but the governance learning process continues throughout the lifecycle of
the GMAS.

4.3 Stationarity

It is known [12] that, for a stationary MDP, near-optimal regret bounds can
be achieved via RL. The situation is more complicated in the non-stationary
case, depending on whether non-stationarity occurs in discrete steps (piece-wise
stationarity) or continuously (among other criteria).

The transition function δ is assumed to be stochastic, but stationary. There-
fore, the defining factor for the stationarity of a GMAS, seen from the gover-
nance’s view, is the set of agent policies π: δ′ is stationary if and only if all agent
policies are static.

While using static pre-trained models is very common for NLP, Computer
Vision and Speech Recognition [41], this is unusual for agent models, since on-line
learning lies at the heart of useful behavior in an unknown world. Nevertheless,
safety-critical agent-based systems like fully autonomous cars will likely require
some sort of certification ensuring that they behave (exactly or approximately)
in a certain way, which means that their policy should not, even when learning
how to deal with unforeseen situations, be allowed to deviate too far from the
approved policy.

Hence, we cannot generally assume that a GMAS is stationary, but in some
domains there can be (quasi-)stationary agents, which means that the gover-
nance is likely to perform better than in a setting where the agents adapt their
strategies arbitrarily fast.

5 Experimental Evidence

A
gents

A
ctions

Fig. 3. The dining diplomats’ problem

The goal of the experiments is to in-
vestigate the effect of the governance.
For this purpose, we define a game
in which the agents need to agree on
an action, and then compare three
types of systems: Ungoverned MAS
(UMAS) which does not have a gov-
ernance component at all, Fully Con-
trolled MAS (FMAS), and Governed
MAS (GMAS).

5.1 The Dining Diplomats’
Problem

Consider an MAS with agent set I =
{1, ..., n} and action set A = {1, ..., k}
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for all agents. The agents are posi-
tioned in a circle such that each agent
can only see their immediate neighbors
(see Fig. 3). At each step, the agents
play a card corresponding to one of
their available actions. The environmental state represents the currently played
cards, i.e., S = An and O = A3.

The agents’ goal is to learn to coordinate their actions in order to play the
same cards. In the style of the famous dining philosophers’ problem, we call
this problem the dining diplomats’ problem, requiring the participating agents
to come to an agreement under imperfect information.

5.2 Reward Functions

Consider two reward functions—a state-based reward and an observation-based
reward:

rs : S → R, rs(s) =

{
1 if s1 = · · · = sn

0 else

ro : O → R, ro(o) =

{
1 if o1 = o2 = o3

0 else

The state-based reward function only differentiates between “no coordina-
tion” and “full coordination”, while the observation-based reward also shows lo-
cal coordination between three agents (i.e., the observation space of one agent).
The three system types use these reward functions as follows:

Agents Governance

UMAS ro -

FMAS rs rs

GMAS ro rs

In the FMAS type, agents and governance have the same information about
achieving their goals, so the governance cannot use the agents as an additional
source of intelligence. In GMAS, however, the agents have access to more detailed
information through ro. Hence, the two pivotal dimensions are (a) access to low-
level/high-level information and (b) dense and sparse rewards.

5.3 Configurations

We compare the three types for four different problem sizes: Tiny (n = 5, k = 3),
small (n = 10, k = 5), medium (n = 15, k = 7) and large (n = 20, k = 10). This
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allows us to see clearly at which complexity the non-GMAS types fail to achieve
coordination, and therefore highlights the value added by the synergy.

The size |S| = kn of the state space grow polynomially in the number of ac-
tions, but exponentially in the number of agents: In the tiny configuration, there
are 35 = 243 states, while this number is 510 ≈ 107 for the small configuration,
715 ≈ 4 ·1012 for the medium configuration, and 1020 for the large configuration.

5.4 Frameworks and Algorithms

For our experiments, we used the RLlib library [22] for Multi-Agent learning,
which is based on the Ray distributed computing framework. Both agents and
governance use a standard configuration of the Proximal Policy Optimization
(PPO) algorithm [36].

The interaction between agents, governance, and environment requires a se-
quential MAS execution: The governance needs to act (i.e., produce a set of
allowed actions) before an agent can choose from this set. All agent actions, in
turn, cause the environment to proceed to the next state. Therefore, the gover-
nance is queried n times for each environmental step, while the agents each only
act once during the same period.

All experiments were run in ten independent samples for 5 · 106 steps each
(empirically determined to ensure sufficient convergence of the action policies).

5.5 Reproducibility

The source code to perform the experiments and generate the graphs is publicly
available as a Jupyter notebook, allowing for simple reproduction of the results.
The exact results shown in Fig. 4 are stored as Tensorboard log files in the same
public repository.

5.6 Results

The results of the experiments can be found in Fig. 4. The governance reward
rG, as the main performance indicator, is shown on the left side, while the graphs
on the right depict the corresponding degree of restriction ρ (see Definition 2).

Since the reward at every step is either 0 or 1, the governance reward r
(t)
G is

the average reward over time, i.e., the percentage of steps where full coordination
of all agent actions has been achieved.

In each graph, the mean of the ten samples (thick line) and the individual
samples (thin lines) are plotted. The numbers vary strongly between samples,
i.e., the mean should be seen as a general trend, but not as the “average run”.

Since the governance policy is initialized randomly, all governed types start
with ρ(0) ≈ 1

2 . The progression of ρ depends on whether the governance is able
to learn a “fully controlling” way to create a high reward. If it succeeds, ρ goes
up to k−1

k and stays there. Otherwise, the governance must utilize the agents’
freedom, and therefore allows more than one action. Notably, the degrees of
restriction turn out to be roughly equal in the FMAS and GMAS types.
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Governance reward r
(t)
G Degree of restriction ρ(t)

T
in
y

S
m
a
ll

M
ed

iu
m

L
a
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e

Fig. 4. Experimental results

Thick lines show the mean of r
(t)
G and ρ(t) over ten independent samples,

while thin lines are the results of the individual samples.
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Tiny Configuration Both FMAS and GMAS achieve an almost perfect re-
ward. While the FMAS solves the task by simply allowing a single action for
each observation (ρ(t) → k−1

k = 2
3 ), the GMAS uses a slightly lower degree of

restriction. The problem is relatively easy, so that the agents in the UMAS
can also find a solution, albeit not a perfect one.

Small Configuration This is challenging for the UMAS, but FMAS and GMAS
both achieve similar, good results. Sometimes the GMAS uses the maximum
degree of restriction, but mostly, agents are given two or three actions.

Medium Configuration The difference becomes larger: The UMAS cannot
find a system state that results in a nonzero reward at all, and the FMAS
performs approximately half as well as the GMAS. We can see from ρ that
even the FMAS governance does not use a maximally restrictive policy, since
it cannot find the optimal actions for each observation.

Large Configuration Finally, both UMAS and FMAS are not able to get any
rewards. In contrast, the GMAS still achieves a reward of more than 15-20%
in four out of ten samples, using a degree of restriction around 50%.

The results show that the GMAS type succeeds in achieving full coordination
of the agent actions in a substantial number of time steps. As expected, the
average reward decreases with increasing complexity of the setting, but it can
handle systems where neither UMAS nor FMAS are able to get any rewards.

5.7 Discussion

Qualitatively, we make the following observations of the three types:

Tiny Small Medium Large

UMAS ✓ ✓

FMAS ✓ ✓ ✓

GMAS ✓ ✓ ✓ ✓

The hypothesis that the synergy of agents and governance significantly out-
performs the conventional approaches of ungoverned agents and centralized con-
trol, indeed holds true. Notably, the agents simply apply their own (self-learning)
strategies, have no normative awareness, and their rewards are not influenced
by the governance.

In this section, we give an interpretation of the observed results:

System Objective and Degree of Restriction The governance in the GMAS
type has the power of fully controlling the MAS—it could simply allow only one
action for any state and observation. Therefore, the crucial observation in the
experiments is that the degree of restriction does not converge to k−1

k .
Instead, the right side of Fig. 4 clearly shows that the governance leaves a

substantial amount of freedom to the agents, and that this freedom causes the
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governance reward to be much higher than using full control (i.e., the FMAS
type).

The balance between governance control and agent freedom is constantly
changing, depending on how well the system objective (as measured by the
governance reward function) is achieved. It is a crucial feature of our approach
that the optimal balance is determined via RL and not defined in advance.

Micro-level and Macro-level Knowledge There are different types of knowl-
edge in the GMAS: The governance can see the entire environmental state and
knows which states are most desirable, but does not know effective actions to
get there, since its reward function only indicates whether the system objective
has been fully achieved. The agents, on the other hand, lack a view of the big
picture, but have a better grasp of how to act on a lower level, since their reward
function tells them when they are locally coordinated.

In the UMAS, the overall state is not available to the agents at all, not
even through the governance. This prevents the agents from finding a globally
coordinated solution, even though they can coordinate locally. In the FMAS, the
governance sees the big picture, but cannot figure out the necessary actions for
the agents to move in the right direction.

The combination of these two levels allows the GMAS to reach global coordi-
nation—without ever being instructed how to combine agent and governance
knowledge. This setting was chosen since it represents a common pattern in
MAS: Individual agents are situated at a specific location in the environment
and only able to perceive their surroundings, i.e., a small part of the environment.
On the other hand, this small part is where their actions have the biggest impact.
The system designer or operator, in contrast, sees the environment as a whole,
but does not have the micro-level knowledge about optimal or even useful agent
actions. Therefore, the goal is clear, but the way to get there is unknown.

Incentives for Autonomy and Restriction The governance can freely choose
the restrictions without being penalized for high degrees of restriction. Conse-
quently, there is no real incentive for the governance to allow multiple actions:
The chosen degree of restriction directly reflects the highest expected reward. In
the small scenarios, we observe that allowing only one action per observation is
a feasible strategy which leads to high rewards. As the scenarios get more com-
plex, however, the governance policy is not maximally restrictive anymore: The
governance learns that the autonomous decisions of the agents are more helpful
than centralized control. Still, by selectively forbidding actions, the governance
can support the agents’ action policies.

Penalties for Restrictions A reasonable goal for the governance is to use
the least amount of restrictions to achieve its objective, and therefore strive to
reduce the degree of restriction whenever this does not counteract the system
objective. To this end, we experimented with giving the governance a penalty in
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proportion to the current degree of restriction by redefining its reward function
as r′G := rG − α · ρ with a constant weighting parameter α. This resulted in
a much lower reward (even when ignoring the penalty), making the governance
drop nearly all restrictions early in the training, before it then defined new, more
effective restrictions. However, the penalty often prevented the governance from
sufficiently exploring the possible restrictions, so there were many samples where
there was never any reward, even in small scenarios.

6 Conclusion and Future Work

In this paper, we have motivated the need for governed MAS, a synergy-based ap-
proach for black-box MAS with an additional system objective. We have demon-
strated that full control as well as ungoverned learning agents fail to achieve their
goals even in simple scenarios; a challenge solved considerably better by GMAS.

The model and experiments give rise to several questions for future work:

– In the experiments presented here, the objectives of agents and governance
were strongly correlated. How can the approach be applied to an arbitrary
combination of goals, and how do conflicts in the objective functions influence
learning?

– What does an extension of the restriction policy to continuous action spaces
look like?

– How do action space restrictions compare (empirically and theoretically) to
other forms of governance, e.g., norms or inter-agent communication?

– Is the approach viable for asynchronous MAS (e.g., cyber-physical systems)?
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