
Embracing AWKWARD!
Real-time Adjustment of Reactive Planning

Using Social Norms

Leila Methnani1[0000−0002−9808−2037], Andreas Antoniades2[0000−0002−4144−3057],
and Andreas Theodorou1[0000−0001−9499−1535]

1 Department of Computing Science, Umeå University, Umeå, Sweden
{leila.methnani,andreas.theodorou}@cs.umu.se

2 Independent scholar andreas.a.antoniades@gmail.com

Abstract. This paper presents the AWKWARD agent architecture for
the development of agents in Multi-Agent Systems. AWKWARD agents
can have their plans re-configured in real time to align with social role
requirements under changing environmental and social circumstances.
The proposed hybrid architecture makes use of Behaviour Oriented De-
sign (BOD) to develop agents with reactive planning and of the well-
established OperA framework to provide organisational, social, and inter-
action definitions in order to validate and adjust agents’ behaviours. To-
gether, OperA and BOD can achieve real-time adjustment of agent plans
for evolving social roles, while providing the additional benefit of trans-
parency into the interactions that drive this behavioural change in indi-
vidual agents. We present this architecture to motivate the bridging be-
tween traditional symbolic- and behaviour-based AI communities, where
such combined solutions can help MAS researchers in their pursuit of
building stronger, more robust intelligent agent teams. We use DOTA2—
a game where success is heavily dependent on social interactions—as a
medium to demonstrate a sample implementation of our proposed hybrid
architecture.

Keywords: Reactive Planning · Normative Agents · Hybrid Systems · Multi-
Agent Systems · Games AI.

1 Introduction

In a Multi-Agent System (MAS) the ability for individual agents to adjust their
behaviour when interacting with each other and their environment is critical
to the system’s success [16]. Yet, agents in MAS need to dynamically re-orient
their priorities away from their individual—often selfish—goals and towards the
system’s collective goals and vice versa as their environment changes.

One technique used to develop agents in highly dynamic environments is
Behaviour-Based Artificial Intelligence (BBAI)[9]. Instead of trying to model
the environment, BBAI strictly focuses on the actions that an agent can take
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and limiting search within a predefined plan for responsive and robust goal-
oriented behaviour [20,13]. While this approach does indeed increase the search
speed, it reduces the flexibility of the system as it is able to react only to what its
developers have specified. Moreover, BBAI on its own is insufficient when applied
to MAS. It does not account for social interactions between agents or any team
work explicitly, and thus fails any consideration of real-world challenges where
accounting for social behaviours is required.

In this paper, we combine BBAI with formal approaches to get the ‘best
of both worlds’ by developing a hybrid architecture: Agents With KnoWledge
About Real-time Duties (AWKWARD). We integrated the OperA framework
[17] with Behaviour-Oriented Design (BOD) [13] for their individual and com-
bined strengths in order to produce socially-aware BBAI agents. With OperA,
we model the interactions between agents, which contributes towards both gov-
erning social behaviour as well as increasing transparency of emerging system
behaviour. With BOD, we can build reactive planning agents that are suited
to interact within uncertain and dynamic environments. We have implemented
a ‘toy example’, presented in this paper, for the popular video game DOTA2.
Video games have traditionally been used to test AI solutions due to their highly
dynamic virtual worlds, which DOTA2 offers as a test bed. Note, we do not con-
sider the specifics of the DOTA2 implementation as our contribution; our focus
and contribution is the AWKWARD architecture.

The paper is structured as follows: first, we discuss Behaviour Oriented De-
sign and OperA as the backbone of our architecture, outlining the relevant char-
acteristics of each. Next, we introduce the AWKWARD architecture and then a
sample implementation of the architecture. In the penultimate section, we look
at related work done in normative agents, comparing and contrasting those ar-
chitectures with our own. Finally, we summarise our contributions and identify
future work.

2 Background

2.1 Behaviour Oriented Design

BOD is a BBAI approach that uses hierarchical representations of an agent’s
priorities [13]. These representations express both the priority of the agent in
terms of the goals it needs to achieve, and the contexts in which sets of actions
may be applicable [10]. Another important feature is the usage of the parallel-
rooted hierarchy, which allows for the quasi-parallel pursuit of behaviours and a
hierarchical structure to aid the design of the agent’s behaviour. On each plan
cycle, the planner alternates between checking for what is currently the highest-
level priority that should be active and then progressing work on that priority.
A plan in BOD consists of the following elements:

1. Drive Collection (DC): The root node of the plan’s hierarchy: contains
a set of Drives. The DC is responsible for giving attention to the highest
priority Drive as at any given cycle only Drive can be active.
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2. Drive: Allows for the design and pursuit of a specific behaviour. Each Drive
has its own release condition of one or more Senses. Even when it is not
the focus of the planner attention, each Drive maintains its execution state
allowing the quasi-parallel execution of multiple drives.

3. Competence: A self-contained basic reactive plan representing the priori-
ties within the particular plan. Each Competence contains at least one non-
concurrent Competence Element (CE). Each of these elements is associated
with both a priority relative to the other elements and a context which can
perceive and report when that element can execute. The highest-priority ac-
tion that can be executed will do so when the Competence receives attention.

4. Action Pattern: Fixed sequences of actions and perceptions used to reduce
the design complexity, by determining the execution order in advance.

5. Action: A possible ‘doing’ of the agent, such the use of an actuator to
interact with the environment; i.e. the means of altering the world and self.

6. Sense: A reading of the world or internal status from a sensor of the agent,
such as measuring distance between specified units in the world; i.e. the
means of reporting environmental and agent status.

BOD aims to enforce the good-coding practice ‘Don’t Repeat Yourself’ by split-
ting the behaviour into two core modules: the planner and the behaviour library
[12]. The former reads and ‘runs’ the plan at set intervals. The latter contains
the blocks of code used by the two primitive plan elements, Actions and Senses.
The rest of the plan elements are textually listed in dedicated files, written in
Lisp-like format [13], read by the planner. A plan file contains descriptions of
both the plan elements and of the connections between the elements.

2.2 OperA

OperA is an agent organisation framework for the design and development of
MAS consisting of three intermingling models [17]:

1. Organisational Model (OM): Describes objectives and the concerns of
the organisation from a social perspective. The development of an OM is
approached from a top down perspective, that is, with overarching goals and
a means to reach them.

2. Social Model: Outlines the agent’s role enactment in the form of social con-
tracts. These social contracts describe what capabilities and responsibilities
each role demands.

3. Interaction Model: Defines interaction agreements between role-enacting
agents in the form of interaction contracts. These contracts serve as verifi-
cation for the fulfilment of interaction agreements between relevant actors
specified by organisational objectives as defined in the OM.

OperA requires that all interactions are expressed as scene scripts. A scene
is a formal specification defining which roles within the organisation partake
in the interaction, what landmarks from the environment indicate the scene’s
start, and what resulting signals describe its termination. More importantly,
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the specification contains a set of rules describing the social norms that the
participating agents are expected to follow for the scene’s full duration. OperA
norms use the deontic expressions of obligation, prohibition and permission as a
means of describing an agent’s social behaviour and further validating whether
it satisfies or violates organisational expectations.

The OperA framework provides a formal specification that depends on or-
ganisational structures and global objectives of the organisation as a whole [17].
Moreover, OperA offers an interaction model between agents without requiring
knowledge of the internal architecture of the individual agent itself; this quality
in particular is our primary motivation for selecting OperA as a normative MAS
framework. Further motivation is offered in Section 6 where we compare our
selection with other related methodologies.

3 The AWKWARD Architecture

The AWKWARD architecture, depicted in Figure 1, is a hybrid-systems archi-
tecture designed for agents operating in multi-agent systems. It consists of three
modules, each with a distinct purpose: 1) the reactive planner; 2) the OperA
module; and 3) the behaviour library. Our solution, inspired by the dual-process
theory presented by [24], employs a ‘fast’ system 1 and a ‘slow’ system 2 working
in tandem for efficient decision making while taking into consideration its wider
environmental and social context.

3.1 The AWKWARD Planner

The ‘fast system’ consists of the reactive planner. The planner allows the agent
to act upon its intuitions: plans with multiple drives are triggered based on
its environmental and internal changes. Each change may enable short-term or
long-term goals for the agent to achieve. Reactive planning has the advantage
of faster action-selection and the ability to manage dynamic and unpredictable
environments [13,9]. Most specifically, we use the BOD paradigm due to its
proven use in virtual environments, e.g. games [32,19,7] and simulations [11].
BOD, unlike other BBAI approaches, allows the execution of multiple behaviours
in pseudo-parallel and has a strong emphasis on modularity and reusability.

BOD plans form a hierarchical tree structure that is traversed from the root
to the leaves in order of priority. This order determines the agent’s behaviour
given the world circumstance it finds itself in. The hierarchy is predetermined
by the plan developer and indicated in the plan. In AWKWARD, plans are
written as JSON files. At its initiation, the Plan Parser component parses the
plan to memory, accessed through the Plan Manager component, storing the
relationships between the plan elements and the hierarchical order of those plan
elements. Each agent’s DCs can be constructed from the same drive elements,
but will differ only in the order of execution, resulting in different expressed
behaviours per agent. By initiating all roles with the same plan (i.e. same drive
collection hierarchy) and enforcing social norms on agents who violate interaction
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Fig. 1: Conceptual diagram of the AWKWARD architecture. The diagram is
colour coded; in yellow, representing our System 1, are the parts of the OperA
module, in blue are the components of system 2, i.e. the reactive planner; and in
green the code components and files shared during execution by multiple agents.

agreements by explicitly re-prioritising drives, we can shape role- and interaction-
dependent plans as needed by the current environment state.

At set intervals, referred to as ticks, the planner’s Cycle Manager prompts
the Action Selector component to re-evaluate the agents’ perceived conditions
to check if a new plan element needs to be executed or the currently running
one should continue doing so. This continuous re-evaluation of the current plan
elements, called the plan cycle, requires access from the planner to the behaviour
library. That is, during each cycle, the planner retrieves the sensory inputs in
the form of Sense plan elements, and may trigger actuators in the form of Action
plan elements. The plan cycle is set on a fixed frequency based on an external
update signal; for example, in our toy implementation, the plan cycle is set on
every frame update inline with previous implementations of BOD in games [19].

On every tick, the Action Selector component retrieves the plan from memory
and checks the Drive Collections (DCs) in a hierarchical order. If the conditions
of a DC are satisfied, as determined by its corresponding Sense elements, it is
executed. The planner then traverses through the drive elements of the DC,
checking if they are eligible to be executed or not. These comparisons are done
by checking by comparing current sensory reading against a set of preconditions,
expressed as sense elements, to determine if the behaviour should be pursued or
not by using simple boolean logic. If a drive fires, the planner stops its search at
the current tick. This approach of local search enables agents to produce complex
behaviours with minimal computational resources as there is no need to explore
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every possible behaviour at each time [20]. If the drive fired is a different one from
the previous cycle, then the existing one ‘pauses.’ In other words, at the DC level,
different drives can be in different states of execution enabling a quasi-parallel
pursuit of multiple behaviours. Instead, the agent focuses—like our system 1
does—on whatever the highest priority behaviour that should be triggered is,
e.g. staying alive, instead of unnecessarily checking if lower priority behaviours
could also be triggered [33,13].

3.2 The OperA Module

In AWKWARD, the ‘slow’ system is the OperA module. It validates the social
behaviour of the agent and provides direction to the reactive planner upon the
completion—either with a success or failure—of a drive’s execution. As discussed
in section 2, OperA is instantiated with a collection of Interaction Scenes, i.e.
formal specification defining which roles within the organisation partake in the
defined interaction. Using the senses found in the behaviour library module, the
Cycle Manager component prompts the OperA module to check whether a scene
has been initiated or terminated.

While a scene is running, the OperA module verifies that the agent’s be-
haviour fulfils all social obligations that the agent has towards the other agents
participating in the same scene. If the agent does not fulfil its obligations, then
the OperA module instructs the planner to rearrange the priority of the drives
in the currently running Drive Collection. This rearrangement is done by push-
ing upwards in the hierarchy any drive that corresponds to the desirable so-
cial behaviour. The OperA module is informed through formal specifications
about which drive should correspond to which social behaviour. It identifies
them within the current in-memory version of the plan by using a string equal-
ity operation. When the adjustment of drives is done, the new plan is stored
in the system’s memory, overwriting the old version. The OperA module checks
if the re-prioritisation has produced behaviour that falls within the social and
organisational norms the agent needs to comply with. If not, the OperA module
continues to adjust the plan’s drives further until the expected social behaviour
is achieved. For this social norm validation, OperA uses the same senses as the
planner component does to check which plan elements should be executed.

In its past implementations, a single instance of OperA operated at a global
level, i.e. it was responsible for agents and interactions in the model. In AWK-
WARD, each agent contains its own local instance of OperA; i.e. each AWK-
WARD agent only checks its own behaviour in its current interaction scene. An
advantage of this approach is that it allows us, at least in larger environments,
to keep track of the multiple localised interaction scenes that the agent can be
in simultaneously.

The use of a localised instance of OperA takes inspiration from Dennett’s
description of social constructs, where local efforts are made by agents to “steer
their part of the whole contraption while [remaining] blissfully ignorant of the
complexities on which the whole system depends” [15]. That is to say, each agent
does not need to have any conceivable notion of the global system’s intricacies,
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but rather a partial comprehension which may suffice for competence. In prac-
tical terms, as demonstrated in our toy example that is further discussed in sec-
tion 4, by having local copies of OperA carried with each agent also means that
an AWKWARD agent is not constrained to interacting with other AWKWARD
agents only. Rather, the agent can consider and interact with any agent archi-
tecture, as well as humans. Moreover, an AWKWARD agent does not require
perfect knowledge of all agents in the same environment—which is impossible
to maintain in certain scenarios, e.g. competitive games—to continuously adjust
and moderate its behaviour within a defined socio-organisational role.

3.3 Behaviour Library

While each agent has its own individual plan structure, a single instance of
the behaviour library can be shared across all agents. It is the collection of
all possible primitives (i.e. Senses and Actions) as discussed in section 2.1. It
is accessed through global function calls in the primitives’ tick functions. The
behaviour library must therefore maintain a direct pointer to the agent that
makes any particular function call in order to return values appropriate to the
agent that requested them. By having a single behaviour library for all agents,
we not only enable code reusability, but also reduce memory footprint of the
agents and support the hosting of a remote behaviour library that runs complex
actions and senses [12].

As discussed above, the behaviour library is accessible by both the planner
and the OperA modules as they each provide control over the agent’s means
of environmental perception, internal status, and any actuators available. This
decision to reuse the same Senses enables code reusability but also constrains
OperA’s knowledge to that of the agent, which it uses for the action-selection
process. Arguably, this is also a more realistic implementation of Kahneman’s
dual-system theory [24]: our system 1 acts reactively and system 2 acts deliber-
ately, but the embodiment with its sensors and actuators, i.e. behaviour library,
is shared by both systems.

4 Implementation in DOTA2

We developed a ‘toy example’ in DOTA2, a popular game characterised by its
extremely steep learning curve and complex emerging behaviour through the
interactions of the different actors between themselves and their environment.
We selected this game due to its complexity, inherent need for a MAS approach,
recognition in the AI research community, and access to a public API for AI re-
searchers3. Moreover, DOTA2 has been used in the past by the AI community;
OpenAI [5] developed agents that were able to outperform 99% of the DOTA2
player base. Our interest, unlike OpenAI, extends beyond the scope of the in-
dividual agent and creating human-beating agents. Instead, we used this highly

3 Available at: https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting

https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting
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dynamic environment to demonstrate how AWKWARD can be implemented
and have BBAI agents working together in a team by using OperA to model
and validate their social interactions.

4.1 DOTA2

In the game, two opposing teams of five players (i.e. agents) navigate through
terrain, striving to destroy a structure in their enemy’s base known as the An-
cient, while also defending their own. There are five roles—or positions—to fill
per team. Each team agent is a hero that is assigned a position complementary
to their given skill-set. For instance, a hero with healing capabilities can fulfil the
responsibilities of a Position 5 role, which includes supporting a hero in the Posi-
tion 1 role. In the early game, the Position 1 role is one of the weakest members.
As the match progresses, Position 1 typically becomes the strongest on the team.
However, to reach that state, a social norm exercised in most games involves giv-
ing Position 1 priority, at least in certain scenes, to perform the self-advancing
activity known as farming. However, given specific circumstances, supporting
roles may break that norm to farm in favour of advancing themselves. Hence, it
is important to alternate strategies between pursuing behaviours for the benefit
of others on the team and for your own personal performance. The resulting
team of agents demonstrate emergent behaviour in the arena as they interact.
This emergent behaviour can be difficult to perfectly model or even understand
from the observer’s perspective.

4.2 The Reactive Planner Module and Behaviour Library

As we discussed in the previous section, AWKWARD consists of a planner mod-
ule and a behaviour library. In order for each agent to behave in compliance with
its assigned role, its dedicated plan must consist of a distinctly ordered collec-
tion of drives (i.e. DCs). In our DOTA2 implementation, the plan is described
in a JSON string that is parsed by the planner. We synchronised the planner
update frequency with the game’s internal execution update; i.e. the planner
ticks the DC to check its drives on every frame update. In our toy example, we
implemented a sample DC with multiple drives.

One of our implemented drives is the DE-FarmLane, represented in Formal-
ism 1. The drive prompts the behaviour of seeking out enemy units called creeps
in the hero’s assigned lane in the environment and striking them when they are
low on health in order to achieve what is referred to as a last hit. Last hits result
in a kill and a gold bounty for the hero to collect. Gold is the currency used to
purchase items in-game providing heroes with added attributes and abilities in
battle. For example, a healing salve can be purchased and consumed to aid in
health regeneration.

The option for health regeneration is captured by Formalism 2. This drive is
executed in response to the agent’s internal state: a measure of low health, as
defined by the agent designer. It is important to note that two drives such as
the external state of farm time in DE-FarmLane and internal state of low health
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in DE-Heal, could be true at the same time. In our current implementation,
which behaviour is expressed is determined by plan structure; namely the order
of executing drives. For example, if DE-Heal is prioritised over DE-FarmLane,
then it will execute for as long as the world satisfies its low health condition, or
until a drive of higher priority is able to run. For instance, if the agent has low
health while simultaneously taking damage the plan designer might prioritise a
behaviour that more urgently involves retreating.

farm time ⇒

x
〈 laning phase ended?⇒ goal

creep can be last hit?⇒ lastHitCreep
creep wave far?⇒ goToCreepWave

⇒ goToAssignedLane

〉
(1)

low health ⇒

x
〈 full health?⇒ goal

healing ability?⇒ use healing ability
healing item?⇒ use healing item
enough gold?⇒ buy healing item

⇒ retreat

〉
(2)

The drive element DE-Retreat, represented in Formalism 3, prompts the
behaviour of seeking refuge in the occurrence of declining health. This drive,
as it is currently implemented, only fires when the hero is below 30% health
and directs the hero towards their home base where their fountain resides and
provides protection while regenerating health.

under attack ⇒
x〈 full health?⇒ goal

low health AND taking damage? ⇒ retreat

〉
(3)

Drives may fire Competences or Action Patterns. The competences consist
of an ordered list of competence elements that fire other competences or action
patterns. The action patterns consist of a sequence of one or more actions—a
primitive element found in the behaviour library along with senses. For instance,
Formalism 1 depicts DE-FarmLane and lists lastHitCreep as a competence el-
ement that fires the action pattern shown in Formalism 4. The action patterns
consist of selectTarget followed by rightClickAttack, which are defined in
the behaviour library.

⟨selectTarget → rightClickAttack⟩ (4)

An agent’s individual behavioural desire is shaped by how its plan element are
arranged and executed. Consider again the drive element DE-FarmLane, which
encourages a hero to individually collect as much bounty from last hitting lane
creeps as possible. All heroes have this drive in their plans, and while it is a
common desire for all members of the organisation to maximise their individual
farm, it would not benefit the collective team if all members were to continuously
act selfishly. For instance, in the early game a hero with the role of Position 1
is often vulnerable and weak with little of the gold needed to mature their
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abilities and grow their arsenal. It is therefore the duty of the Position 5 role to
sacrifice farm for the sake of their allied member who requires it more at this
early stage. Social interactions become particularly interesting and important
for us to capture here. This is also where the OperA framework shines, as it
enables the definition of social role assignments and interaction agreements for
the advancement of the whole team unit.

4.3 The OperA Module Implementation

We use social interactions to alter the order in which a reactive agent’s drives
are fired. Accomplishing this real-time adjustment should demonstrate successful
expression of social behaviour. That is, altering selfish priorities for the collective
good of the organisation the individual hero is a member of. The OperA mod-
ule requires a record of the relevant members and their associated roles within
the society. Currently, each hero’s role assignment also determines their lane
assignment in the environment, which further characterises their “right”.

For example, Table 1 outlines the role of Position 1, indicating that their
ultimate objective is to ensure their team’s victory, which can only be done by
collecting enough items to become powerful. Their sub-objectives are therefore
to farm as much as possible, buying items with earned gold from farm. They
have the right to do so in their assigned zone: the safe lane—named as such due
to its proximity to safety zones. An example norm that applies to a Position 1
hero is the obligation to farm enemy creeps when they are close by. In contrast,
Table 2 shows the role table for Position 5, who is not permitted to farm while
Position 1 is nearby. This sacrifice is to ensure Position 1 gains enough gold to
quickly advance their role and carry the team in the later phases of the game.

Table 1: Position 1 role defined using the OperA framework
role id Position 1

objectives carry team to victory
sub-objectives farm and buy items
rights high priority in safe lane

rules IF enemy creep around THEN
OBLIGED to farm

In the OperA module, relevant norms are constructed by parsing JSON
strings with their descriptions. Each norm has a name identifier, an associated
behaviour, and a deontic operator. The behaviour corresponds to the suitable
drive element of the agent’s planner. The deontic operators we focus on for this
implementation are NOT PERMITTED and OBLIGED. The PERMITTED operator is a
softer norm that induces no change to the plan in the current implementation. A
norm also has a reference to an assigned agent’s plan. It is validated by checking
the agent’s active drive against the expected (norm) behaviour, and whether it
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Table 2: Position 5 role defined using the OperA framework
role id Position 5

objectives support team to victory
sub-objectives heal allies and take fights
rights low priority in safe lane

rules IF Position 1 nearby THEN
NOT PERMITTED to farm

Table 3: Interaction Scene for Priority Lane Farming
scene priority lane farming

roles carry and support
landmarks partner and creeps nearby
results partner not nearby

rules

IF highest priority around THEN
OBLIGED to farm

ELSE
NOT PERMITTED to farm

is permissible or required within a given circumstance. If a norm is violated,
sanctions should be applied. In our implementation, a norm can alter the plan
in response to a violation. Recall that our planner implementation allows for
the removal and insertion of drive elements at runtime. While norms can—and
should—be associated with the individual agent, what is most interesting for our
purposes is the use of norms to characterise interaction scenes between agents.
An OperA interaction scene has a unique name identifier, a list of roles involved
in the scene, a list of landmarks that indicate the start of a scene, a list of re-
sults that indicate the end of a scene, and the rules that indicate the norms
that constrain the agents’ behaviours such that they remain within the social
expectations of the team. In our implementation of scene objects, the landmarks
and results correspond to sense primitives that were re-used from the reactive
plan elements, as do the rule conditions that determine the appropriate norm to
apply in the scene.

Consider again the agent’s DE-FarmLane (Formalism 1). This drive is fired
when the senses isFarmingTime and isSafeToFarm return true. We have defined
farming time as the early game (approximately the first 10 minutes) and safety
corresponds to the fight activity and whether any enemy heroes are threatening
the agent’s farm ability. For the purposes of this demonstration, we assume it
is always safe to farm and the sense will return true. The competence elements
that the farming drive consists of checks conditions in a prioritised order: if the
agent is not at the creep wave, they must move there. (Unlike action patterns
which always execute in the same order, competences will skip this element if
the condition returns false). If the agent is already at the creep wave, then the



12 L. Methnani et al.

next condition check is whether any enemy creep around can be last hit. A creep
can be last hit when their health is lower than the hero’s attack damage and
is located within attack range. If this condition is true, the agent will select
the appropriate target and attempt to land the last hit. Notice that the drive
is entirely self-directed and lacks any social consideration. That is, each agent,
while expressing farming behaviour, will pay no mind to whether they have the
highest priority around or not. An agent pair farming in the same lane is not
optimal behaviour from a social perspective. The agents must abide by social
norms for this given circumstance, and OperA can facilitate this interaction using
scene scripts. The result is preservation of interaction agreements and altered
plans that better suit each agent’s role requirements.

While this farm priority check is a simple example that can just as easily be
incorporated into each agent’s plan, we argue that it will become limiting and
wasteful over the course of the game. We observed that when social awareness
was incorporated into an individual agent’s plan, the structure not only became
longer to read and more complicated to understand, but also resulted in increased
idle time while an agent was attempting to express farming behaviour. When an
agent of higher priority is farming, the agent should not continue to attempt to
farm, but should instead fire a different drive for productivity. This coordination
is best handled by an organisational/social-aware structure, like OperA. We
argue that the individual agent itself should not have too many intricate details
about interactions, especially considering the long-time horizons of a game like
DOTA2 where social behaviour itself is expected to shift along with the various
game phases. In fact, OperA scene scripts very nicely accommodate this game
attribute. If behaviour can be altered by OperA, then the reactive planners
become simpler to construct. The complexity is captured and described by the
OperA interaction models.

5 Results

In this paper, we are exclusively concerned with developing a system that can
alter agent plans in response to social interactions, regardless of whether other
entities in the society have a similar architecture or not. Hence, we designed the
evaluation of our sample implementation to reflect that. For the scope of this
project, we focus only on the first 10 minutes of the game; within this time in
particular, farming priority is important in terms of behaviour adjustment due
to expected social norms.

The interaction under evaluation is described by the Priority Farm scene as
defined by an interaction scene object. The particular behaviour that is expected
is for the Position 5 agent—the AWKWARD bot—to give up its own farm for the
benefit of the ally of higher priority in the same lane. In this case, the relevant
ally is the Position 1 agent—the default bot.

To demonstrate how these changes in the plan impacts the performance of
agents, we used gold acquisition as a quantitative metric. This is the standard
metric used for players’ performance evaluation in DOTA2 tournaments. The
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Fig. 2: (Left) Similar rate of gold acquisition between Position 5 (orange) and
Position 1 (blue) DOTA2 agents when OperA makes no alterations to Position
5’s plan during the Priority Farm interaction scenes. (Right) Diverging rate of
gold acquisition between Position 5 and Position 1 DOTA2 agents as a result
of AWKWARD rearranging the plan for the agent in the Position 5 role. Trend
lines represent average over N = 5 trials.

agent’s value of gold is measured over the course of the first 10 minutes of the
game. The right subplot in Figure 2 shows the divergence in gold acquisition
over time between the AWKWARD bot of position 5 and the default DOTA2
bot of position 1 over five trials. This divergence can be explained by the AWK-
WARD bot’s social behaviour change; OperA banning farm will result in the
role sacrificing its own gain and promoting its ally’s acquisition of gold instead.
The AWKWARD bot’s social adjustment is to deny itself from farming when
the priority ally (Position 1) is around.

In this scenario, we mark the moments in time where plan changes are ex-
pected to occur due to social interactions, but OperA is not inducing the change
in order to see the difference in each bot’s gain. While both roles still acquire
gold, Position 1 has acquired less than expected, and both agents approximately
match each other’s gain.

In contrast, the left subplot in Figure 2 illustrates a different trend when the
AWKWARD bot does not change its plan within the social context. These plots
show the two roles on par with one another in terms of gold acquisition over time.
When the AWKWARD bot does not alter its plan and continues to attempt to
farm, even while the ally of higher priority (Position 1) is also farming in the
same lane. The difference in gold acquisition between scenarios can be seen over
numerous trials (the dotted lines shows the average linear trend over 5 trials).
The data varies in time and gold value due to added randomness across game
instances, but the overall trends remain similar.
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6 Related Work

The AWKWARD architecture combines the normative framework OperA with
the Behaviour-Based AI architecture BOD. In this section, we review and com-
pare our architecture to relevant approaches found in the literature. As a com-
plete survey of the literature is beyond the scope of this article, we focus on the
most relevant approaches that we considered during the conceptualisation of the
AWKWARD architecture.

6.1 Behaviour-Based AI

Various approaches of Behaviour-Based AI have been proposed for achieving
real-time performance in embodied—physical or virtual—agents including the
Subsumption Architecture [8], Pengi [1], and ANA [27]. These bottom-up reac-
tive planning approaches use condition-action pairs without—or with minimal—
internal state; i.e. a simple functional mapping between perceived environmental
stimuli and their appropriate responses. Such reactive approaches have proven
highly effective for a variety of problems [28]. However, in comparison to BOD,
these approaches expect little regularity in the arbitration of behaviour; i.e. all
possible behaviours must be considered at all times. Moreover, they cannot store
information dynamically, thus putting the onus on the developer to predict possi-
ble stimuli and develop the appropriate behaviours. BOD overcomes these issues
by further decomposing behaviours into “things that need to be checked regu-
larly, things that only need to be checked in a particular context, and things
that one can get by not checking at all” [13].

While BOD also originated as a robotics cognitive architecture with its POSH
implementation [13]—and most recently Instinct [33]—it has made its way to
virtual environments such as games, e.g. pyPOSH in Unreal Tournament[7],
POSH-Sharp in StarCraft [19], and UNPOSH in Unity [32]. However, in these
implementations of BOD, there was no mechanism to verify that the agents
adhere to their social roles. Instead, unlike our AWKWARD implementation, the
plan developer had to ensure that any social norms were accounted for during
the plan’s development, limiting the possible interactions between agents and
team-level performance of the agents.

6.2 Normative Agents and Self-Organisation

The AWKWARD architecture is related to previous work done in the devel-
opment of normative agents. Early work in the literature for normative agents
proposes architectures that extend Belief, Desire, Intention (BDI) models with
norms [14,25,26]. These agents deliberate around the generation and selection of
both goals and plans. For instance, [6] describe their (Beliefs, Obligations, Inten-
tions, and Desires) BOID agent architecture that appends obligations as a mental
attitude in addition to its beliefs, desires and intentions. However, as [18] argue,
BDI agents focus towards their own goals instead of social interactions—both
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with other artificial and human agents—making such approaches unsuitable for
multi-agent systems where cooporation between agents is necessary.

Another related approach is N-Jason, a norm-aware BDI agent interpreter
equipped with the programming language for agent norm compliance at run-
time [26]. It extends Jason/AgentSpeak(L) with addition of normative concepts
such as obligations, permissions, prohibitions, deadlines, priorities, and duration.
Similar to N-Jason, N-2APL is also a BDI agent architecture that supports norm-
aware deliberation [2]. N-2APL allows agents to adopt normative behaviour in
the form of deontic obligations and prohibitions with specified deadlines. OperA
being a framework for formal specifications of social interactions instead of a
complete architecture, enables us to define explicitly the social interactions in
the form of scene specifications while also keeping the reactive planner compo-
nent independent; i.e. operational without the OperA module.

Relevant work also includes existing methodologies for the development of
normative agents in multi-agent organisations such as Moise [21] and its exten-
sion Moise+ which adds an inheritance on the roles and structural verification
features [23,22]. Moise+ is based on notions of roles, groups, and missions, en-
abling explicit specification of MAS organisations that agents can reason about
and organisational platforms can enforce [23]. Moise+ offers an implicit descrip-
tion of an interaction protocol through deontic links that specify agent permis-
sions and obligations within their assigned missions. An agent belongs to groups
where they are offered a set of permitted roles and missions. Thus, upon changing
roles and missions, groups are also subject to change, allowing for task-oriented
coalitions to be defined. While interactions in Moise+ are task-driven, OperA
leads by social expectation in the form of explicit contracts; a main motivation
for its adoption in the work presented here.

All of these approach capture and represent social norms in order to enable
agents to self organise. However, they rely on integrating the social norm enforce-
ment directly into the decision making system. In our architecture, we allow for
both reactivity and social deliberation as the situation demands. This ensures
that our agents can act efficiently in their environment on their own, i.e. act
as complete complex agents, while also organising themselves based on their so-
cial roles—and corresponding responsibilities—when they are a part of a larger
organisation. Moreover, our decision to use a distributed version of OperA en-
sures that our AWKWARD agents can interact with other AWKWARD agents,
non-AWKWARD agents, and even humans.

Finally, AWKWARD considers that all agents have the capacity to act self-
ishly and altruistically to varying degrees determined by their roles and social
interactions. In contrast to above approaches, we use a reactive planning archi-
tecture for the individual agent motivated by its ability to handle uncertainty
and dynamic environments. We assign obligations via external expectations that
may be subject to change. This approach of global coordination also differs from
other work proposed for developing normative reactive planning agents, such
as the NoA architecture [25]. While NoA adopts norms and deliberates over
their activation, our proposed framework concerns itself with dynamically im-
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posing, monitoring and enforcing norms through global coordination, and then
distributed enforcement, rather than individual deliberation.

6.3 Hybrid Approaches with Reactive Planning

AWKWARD combines formal reasoning, in the form of the OperA module, with
reactive planning. A related approach is the logic-based subsumption architec-
ture, where the different control layers that make up a subsumption system have
been axiomatised using first-order logic [4,3]. The benefit of this approach is the
introduction of non-monotonic reasoning into reactive planning; i.e. developers
can understand and easily add control layers to the subsumption planner at run
time [4]. Similarly, the Layered Argumentation System combines—at hardware
level—fuzzy reasoning and non-monotonic reasoning for run-time generation of
reactive plans [31,30]. These combinations of reactive and formal reasoning ap-
proaches bridge together communities—one of our goals—but their focus has
been to improve the overall performance of the agent by combining the two
paradigms instead of enabling cooperation between multiple agents.

With the latter goal in mind, ABC2 architecture combines classical plan-
ning with reactive approaches [29]. ABC2, similar to AWKWARD, emphasises
cooperation between agents. In ABC2 each agent has to define and broadcast
their own ‘skills’; i.e. it requires active communication and coordination instead
of promoting self-coordination as AWKWARD’s OperA implementation does.
AWKWARD keeps the reactive and formal parts of the system completely sep-
arate from each other; i.e. our reactive planner—sans social consideration—can
operate without the OperA module.

AWKWARD uses both formal reasoning and reactive planning as comple-
mentary approaches to each other. However, unlike past approaches, this combi-
nation is done on an architectural level. By keeping the reactive planner separate
from the normative system, our reactive planner can operate without the nor-
mative reasoning module—even if the agent is not behaving within the limits of
its socio-organisational role.

7 Conclusions and Future Work

In this paper, we presented the AWKWARD architecture for hybrid systems:
agents that combine normative reasoning, in the form of OperA, and behaviour-
based AI methods, in the form of BOD, at an architectural level. Combining the
advantages of BOD and OperA, AWKWARD achieves real-time adjustment of
agent plans for evolving social roles as it verifies—and adjust plans to ensure—
adherence to any socio-organisational role prescribed to the agent. We provided
a toy example, implemented in the game DOTA2, where we demonstrated how
AWKWARD enables continual manipulation of agent’s behaviour over changing
environmental and social circumstances.

With the planner and OperA module implemented in DOTA2, we have
demonstrated how OperA can influence the behaviour of reactive planners under
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defined social circumstances. However, manually designing and building reactive
plans can be inefficient and time consuming for system developers, especially as
plans scale. As a next step, we intend to investigate methods of optimising plan
structure automatically. To do this, Reinforcement Learning techniques can be
employed to guide the discovery of an optimal ordering and OpenAI Gym acts
as a favourable toolkit for this task. Additionally, we are interested in extending
the scope to cover variable autonomy, where varying levels of decision-making
control can be passed between a human player—who either directly controls a
hero in the game or oversees a team of bots—and artificial agents.
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