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Abstract. The financial sector continues to experience wide digitaliza-
tion; the resulting transactional activity creates large amounts of data,
in principle enabling public and private actors to better understand the
social domain they operate on, possibly facilitating the design of interven-
tions to reduce illegal activity. However, the adversarial nature of frauds
and the relatively low amount of observed instances make the problem es-
pecially challenging with standard statistical-based methods. To address
such fundamental issues to non-compliance detection, this paper presents
a proof-of-concept of a methodological framework based on automated
discovery of instances of non-compliant behaviour in a simulation envi-
ronment via grammatical evolution. We illustrate the methodology with
an experiment capable of discovering two known types of Ponzi schemes
from a modest set of assumptions.

1 Introduction

Financial crime occurs at many levels of society, from credit card fraud, to tax
fraud, money laundering, terrorist financing, financial market manipulation, up
to the corruption of the highest representatives of individual countries or interna-
tional political bodies. A unifying aspect of all these instances of non-compliance
is that the transaction of assets with the aim of illegal profit is typically con-
ducted in such a way that no suspicion of illicit activity arises. In order to detect
non-compliant activity from available evidence, researchers and analysts have
applied over the years various computational methods, ranging from rule-based
systems, knowledge graphs, machine learning models, to executable models of
social systems. Although these applications have shown various levels of success,
several issues remain at present, still exploited by non-compliant actors [17,4].

Research background Synthetizing non-compliant behaviour into a set of pat-
terns, either explicitly via a set of logical rules, or implicitly by some ma-
chine learning method, typically face difficulties as e.g. explainability (for ML-
based methods), unavailability of data, high false positive rate, or overlooking
the adaptability of non-compliant agents. All these issues make traditional ap-
proaches both ineffective and inefficient, particularly on the medium-longer term.
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We will elaborate therefore on three other trends observed in the literature. Ac-
cording to a recent review [3], network analysis tools have been slowly finding
their way into prominence. These tools capitalize on the ability of networks to
represent complex relationships, and at the same time being both interpretable
and easy to visualize. Once the transaction graph is formed, the main goal
becomes essentially to detect non-compliant individuals, suspicious events, or
anomalous structures [2,1]. Several methods of this type have already been pro-
posed in the area of financial fraud detection [24]. Comparatively, approaches
based on modeling and simulation are covered by a much smaller number of
studies [18,6], most of which focus on the possibility of training detection mod-
els on simulated data, also to mitigate the issue of high false negatives. Only a
few simulation environments were developed in the literature to generate illicit
transaction activity. Instead, the issue of adaptivity is addressed mostly in the
context of adversarial machine learning [25,12,14,16]. However, this approach
targets the local fraud space defined by the parametric model determined by
the dataset, so it can hardly generalize to illicit behaviour in a global sense,
i.e. not included in the data or encoded in the classifier. If we target the design
of intelligent agents autonomously learning frauds by interacting with the en-
vironment (and so capable of generating new illicit behaviours), the number of
studies is even lower, e.g. co-evolutionary methods to discover tax frauds tested
in a transaction tax network environment in [15]; reinforcement learning [19] to
design an agent learning credit card fraud in an adversarial environment.

Generalizing to any kind of adversarial system where the detection model
is tested against a model of an adaptive perpetrator, the research seems to be
progressing faster in other areas. For instance, adversarial systems are more
extensively studied in the area of artificial intelligence [7], although still on a
relatively low scale level. The area of cybersecurity is advancing comparatively
faster than the socio-legal domain, probably because the implementation of a
model of cyber environment is less of a challenge compared to social systems,
which means model-based testing methods can be effectively implemented [21].

Aims and contribution of the paper Fraud schemes target specific vulnerabilities
of a socio-legal system and/or psychological weaknesses of its victims, and very
often exhibit a modular structure: more complex schemes tend to be modifi-
cations of simpler ones. This short paper presents and elaborates on this intu-
ition, focusing on Ponzi schemes (PSs) implemented on distributed ledger, i.e.
smart contracts. The reason why we choose specifically smart contract PSs is
that the complex legal terminological nuances involved in arbitrary contracts
are mitigated with smart contracts because of their mechanistic transaction en-
vironment. This, and public availability of data, makes the distributed ledger
suitable for the type of investigations. Moreover, due to popularization of this
technology, the question of smart contract PS detection is a pressing issue [8,9].

In our study, we pursue a long term goal of developing a fraud discovery
assistant, where illicit behaviour can be generated depending on presumed ob-
servables, socio-psychological modules of the simulation model, or potentially
even the implemented countermeasures. At this point of research, we focus on
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the first (generation) and briefly discuss the second (internal socio-psychological
modules) and third (couuntermeasures) aspects. Depending on observables con-
sidered, two known types of PSs will be discovered using grammatical evolution.
The illicit activity discovered and simulated in the model will be visualized as a
series of snapshots of the transaction network.

Case study: types of Ponzi schemes Various types of smart contract PSs al-
ready exist on the Ethereum blockchain [5]. In its basic version, each time a
new participant enters the scheme, the entry fee is redistributed equally among
other participants. A modification that aims to create a community of highly
profitable users can be implemented by imposing a preference ordering on the
capital redistribution. For example, to exploit risk-appetite and deceivability of
society, early-stage investors can be benefited by repaying the premium chrono-
logically; therefore, the participants that joined later might not be repaid once
the capital is depleted. This type of smart contract PS is known as waterfall
type. Another type, that is in a way a modification of the previous two types, is
the array type. In this case, the redistribution mechanism keeps track of which
participant was paid last in order to equalize the frequency of payments, but at
the same time pays the next participant only if there is enough capital to send a
payment exceeding the entry fee of the participant. This means that it prioritizes
the size of the user base that is already in profit, therefore it is more likely the
scheme will be perceived as a valid investment in the society. Clearly, there can
be more sophisticated variations of smart contract PSs, for example including a
reward for participants recruiting new users; however, for our current aims, the
two previous schemes are sufficient.

2 General Framework

In order to generate and evaluate possible fraud schemes, we propose a frame-
work for (re)construction of non-compliant behaviour that requires four opera-
tional components. These are: (i) a search space defined by an action space (in
which a fraud scheme can be constructed); (ii) a simulation environment to exe-
cute actions of agents including a non-compliant (or fraudulent) agent, in which
(iii) a fitness function can be calculated to determine how good each scheme is
by evaluating its outcome; (iv) a search algorithm to explore the search space,
that we typically identify with the reasoning mechanism of the non-compliant
agent. If all four instruments are well-defined, then it is possible to (re)create
the fraudulent behaviour as illustrated on Figure 1.

Expert knowledge is used to formulate hypotheses about the functioning of
the simulation environment and representation of the search space, including
relevant observables for the non-compliant agent (search algorithm). The inner
loop (continuous lines) searching the space of non-compliant schemes produces
a dataset of transaction schemes. The set of hypotheses can be subsequently
extended with assumptions that give rise to new instances of non-compliant
behaviour (dashed lines).
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Fig. 1. Overview of methodology to (re)construct non-compliant behaviour

Arguably, a detection algorithm is also an important part of the theoretical
framework. However, at the current stage of research, we consider it as essentially
a different research question subsequent to the generation problem (see the dis-
cussion section for insights on future directions). Moreover, note that simulation
environment can be also combined with additional goals as assessing algorithmic
fairness (see e.g. [11]).

3 Generation of Ponzi schemes

In general, a simulation model generates a sequence of transactional graph snap-
shots G0, ..., GT as a record of agents interacting in the environment for a finite
number of steps T . The fraudulent subgraph sequence H0, ..,Ht for t < T is
generated during the simulation process, in association with non-compliant ac-
tivity. For the sake of this study, the agent-based model will be designed to be
minimalistic, which means that only the minimal set of assumptions necessary
to approximate PS mechanism will be employed. Since PSs do not in principle
depend on transactions that are happening outside the scheme, it is not needed
to assume any direct transactional interactions between the agents. While this
might intuitively seem an unsound manner to model social systems, it turns out
to be an advantage, because it allows us to generate data related to illicit be-
haviour only by using the assumptions necessary for the illicit behaviour to arise.
Obviously, it is true that other forms of interactions happen in the real world
during a PS spread, but this extension is needed only for more sophisticated
types of schemes (see p. 9).

In practice, no additional economic activity producing value is assumed in
the model, which means except for trivial cases every transaction sequence is a
PS. This simplifies the modelling as there is no need to define a PS either on
a phenomenological or a logical basis. Yet, the adaptation mechanism to find
profitable schemes will plausibly work for more complex settings (e.g. societal
policies, physical constraints, additional economic actions). Consequently, by
relaxing this assumption, more sophisticated schemes can be addressed.

Contract mechanism We assume that the initial transaction graph G0 is an
empty graph with N + 2 nodes; one node represents the contract, one node
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Fig. 2. Initial state is an empty transaction graph G0 (blue nodes) and subgraph H0

(red nodes). In G1 a transfer of 11.15 cash is made between the node 1 and the contract
node. In the state G2 the subgraph H2 has three nodes.

represents the initiator of the contract, and N nodes represent the agents that
can join the contract. The contract and its members constitute the subgraph
sequence H0, ...,HT and therefore the initial subgraph H0 will consist only of
two nodes (the contract node and the initiator) and zero edges.

The contract has two attributes: a deposit account and a list of members. In
order to join the contract, an agent needs to send an entry fee, that is initialized
for each agent randomly from a prespecified distribution. If an agent decides
to join the contract, the entry fee is sent to the contract deposit address. The
mechanism, specified in the following excerpt, is illustrated on Figure 2.

1 if contract.isTrustworthy(agent.threshold):
2 G.addEdge(agent , contract , agent.entryFee)
3 G.executeTransactions ()

In the simulation environment, the method addEdge adds a directed edge from
the node in the first argument to the node in the second argument. The method
executeTransactions is called on a graph object by an agent to execute trans-
actions defined by the edges. The threshold attribute of an agent and the
contract method isTrustworthy serve to model the agents’ attitude, and will
be explained in the next section.

Contract trustworthiness and agent trust During the simulation, the trustwor-
thiness of the contract is calculated as a numerical value in the zero-one interval.
There is no general agreement what exactly makes a contract trustworthy to peo-
ple; for the sake of example we consider two plausible basic assumptions, and
define a function based on these assumptions3. The trustworthiness Tr of a con-
tract is (a) proportional to the relative amount of agents in profit n+ compared
to the number of agents n that have already joined; (b) inversely proportional
to the root of the density of agents that joined the contract. Following these two

3 The model of trust used in this study is simplistic and serves only for the purpose
of demonstration. For overviews on trust models see, e.g. [23,10].
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assumptions, we can define the function:

Tr(n+, n) =
1 + n+

n
·
( n

N

) 1
K

(1)

where K > 1 is a societal coefficient, that controls the interplay between the two
assumptions.

Each agent has an internal threshold that determines if an agent joins the
contract. The method isTrustworthy returns True if the trustworthiness of the
contract is higher than the threshold of the agent, and False otherwise. We
assume that the internal threshold parameter of each agent is proportional to
the entry fee the agent is willing to pay to join the contract, because we deem
a plausible assumption that the agents considering to pay more will be equally
more skeptical of their investment.

Fitness Clearly, the profit attained by the PS heavily depends on the equation
(1), and therefore the scheme initiator needs to decide the optimal redistribution
of capital such that the scheme is attractive for the agents in the environment.
This means that the initiator needs to balance out short-term profit with long-
term sustainability of the scheme. This is a core parameter for this type of
non-compliant behaviour. The fitness of a PS is then defined as the amount of
capital generated for the initiator, that is, the amount of redistributed capital
that ends up in the deposit address of the initiator node.

Search space representation Once the graph G0 and the subgraph H0 are initi-
ated, the scheme is defined by its specific capital redistribution structure. This
redistribution structure consists of a set of logical rules that evolve the trans-
action graph, deciding which members should be paid. In our framework, the
characteristic form of the PS is expressed as illustrated below:

1 if contract.FeeReceived(new_user):
2 H.addNode(new_user)
3 H.addEdge(new_user , contract , new_user.entryFee)
4 G.executeTransactions ()
5 try:
6 H.evaluate(instructionSequence)
7 G.executeTransactions ()
8 else:
9 exit()

The set of instructions instructionSequence consists of instruction that modify
the payment scheme Ht−1. Then the payments defined by the modified graph
Ht are carried out by the executePayments() method4. Note that an entry
condition can be considered for potential new users, e.g. a minimal entry fee.
For simplicity, we assume no special conditions are in place: anyone can join.
4 It can be argued whether executePayments should be called after every instruction,

or after graph modifications, e.g. AddNode already applied during the evaluation of
instructionSequence; however, this choice does not affect the model profoundly.
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The syntax of the instructions instructionSequence will be defined by a
context-free grammar, defined in Backus-Naur form below:

<instruction> ::= <clause> ; <instruction> | <clause>
<clause> ::= if (<premise>) <action>
<action> ::= H.addNode(<node>) | H.addEdge(contract, <node>, <weight>)

| H.removeEdges(contract, <node>)

The actions addNode, addEdge, and removeEdges, add node, edge, and remove
edges of the subgraph Ht respectively. The rest of the terminal symbols will be
formulated later to illustrate how specific assumptions of observables depend on
what kind of scheme is generated. In the trivial case displayed on Figure 2,
the instruction sequence would consist of three instructions: H.addNode(1),
H.addEdge(contract, 1, 11.15), and H.removeEdges(contract, 1), where
11.15 is the weight of an edge that corresponds to the amount of currency trans-
ferred. As will be defined later, the symbol <node> can be replaced by a variable,
which means the instruction sequence of the initiator essentially acts as an open
formula that is grounded in an event of a new agent joining the PS5.

Note that not all words generated in the exploration are semantically correct
(e.g. adding a node that was already added), which is why the code above requires
try method to call the exit() method if an error is detected on runtime.

4 Experiments and Results

The present work empirically demonstrates how two PS types can be discovered
based on the introduction of hypothetically relevant observables, as following
the methodology described in Figure 1. In practice, the context-free grammar
presented above is extended with further terminal symbols (standing for the
hypothetical relevant predictors), i.e. dedicated query-methods (used by agents
to perceive some property from the environment), and premises (used by agents
to condition performance).

In our experiments, the search algorithm used by the agent to discover new
instances of illicit schemes from the given set of predictors is grammatical evolu-
tion [22].6 For the simulation environment, we will consider N = 100 agents and
the societal coefficient K of the trustworthiness function will be set to 10. The
distribution of the entry fees follows a Beta distribution with both first and sec-
ond shape parameter equal to two, which means the distribution approximates
a Gaussian. The sampled value from the Beta distribution is scaled by a factor
of 10 for better readability.
5 This reflects the event-driven architecture integrated into the smart contract pro-

gramming language Solidity. In general, it captures the cyclic characteristic of fraud-
ulent business models.

6 In general, grammatical evolution is an evolutionary algorithm where words of a
grammar are mapped to integer vectors, and an evolutionary optimization procedure
is used to optimize the fitness function. Then integer vectors are mapped back to
words.
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Waterfall-type topology The basic Waterfall type of PS can be found by including
a set of rather trivial terminal symbols into the grammar. In the instruction
sequence, it must be indicated who is the initiator of the scheme and who is
the new user that wants to join. The getFee method returns the entry fee of
the agents that already joined. Further on, the possible percentages of either
the entry fee or the contract balance to be paid to the contract participants are
assumed. A handy piece of information to include is the NUsers query-method,
that takes as an argument an integer and returns true if the number of market
participants is equal to the argument.

<premise> ::= TRUE | NUsersEq(<int>)
<node> ::= new_user | initiator
<weight> ::= <percentage>·getFee(<node>) | <percentage>·contract.balance
<percentage> ::= 0.06 | 0.1 | 0.2 | 0.5 | 1.2 | 2
<int> ::= 1 | 2 | 3 | 4 | 5 | 10 | 50

By visually analysing the best 20 generated transaction graph sequences, we
have observed that all of them had a star graph structure, that is typical for the
waterfall type (Figure 3). The only deviation from this pattern occurred when
the algorithm decided to send capital to the initiator only after a sufficiently high
number of contract participants was reached. This means that the evolutionary
algorithm discovered that the spread of the PS is greater, and therefore also the
amount of capital accumulated, if the capital is redistributed more generously
at the beginning.

Array topology As already discussed, the waterfall type can be made more ef-
ficient if the scheme will have a concept of who was paid last and who should
be paid next. Indeed, each time the method executeTransactions is called for

Fig. 3. Snapshots of the transaction graph for the waterfall type (upper row) and the
array type (lower row) of Ponzi Schemes (PS).
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the waterfall scheme, many of the transactions cannot be executed because the
capital of the contract is depleted. This issue can be resolved by including three
more query-methods into the grammar, modifying it as such:

<premise> ::= TRUE | NUsersEq(<int>)
| BalanceFeeHigherAndNotConnected(<node>, <weight>)

<node> ::= new_user | initiator | getNextToPay() | getLastPaid()

where getNextToPay and getLastPaid keep track of which agent was paid last
and which agent is next in order; BalanceFeeHigherAndNotConnected returns
true if the contract node is not connected to the node provided by the first
argument and the capital balance of the contract is higher than the second
argument. Running the search procedure over the extended search space yields
the array type of PS. The typical “clock” pattern is depicted on Figure 3. As in
the waterfall case, a number of different transaction patterns were discovered.
These mutants differ slightly in the transaction topology, usually adding one or
two instructions more into the instruction sequence.

5 Discussion

Convergence Computation-wise, the evolutionary algorithm for a population of
size 100 with other parameters kept default [22] can easily find profitable PSs of
Waterfall type in less than 200 iterations. In order to discover the Array-type,
the algorithm had to be extended with an adaptive mutation chance parameter
to avoid getting trapped in local optima7 of the Waterfall-type.

Extending to other types of Ponzi schemes Other types of PS can be explored
similarly. For instance, to include a PS spread mechanism as those observed in
social systems [20], a simple network spread model [13] can be implemented, ex-
tending the grammar accordingly. Participants to the scheme has to be rewarded
by how many new members they have recruited. Adding to the grammar a query-
method that returns the number of new contract participants recruited by an
agent would be sufficient in terms of predictors. However, a mechanism that
motivates the individual agent to recruit new participants would also need to be
present.

Detection supported by generation Without loss of generality, assume we use a
certain neural network to decide whether a certain behaviour is compliant or
not. This detection model can be trained on labelled data records of a given
socio-economic system, and then tested also on labelled data obtained via the
simulation environment. The training dataset can be subsequently extended by
generated instances of non-compliant behaviour to enhance the performance of
the classifier, mitigating the issue of unbalanced datasets as motivated in the in-
troduction. Note that these instances can correspond to previously unobserved
types of non-compliant behaviour. More interestingly, since the noncompliant
7 See the source code: https://github.com/fratric/Ponzi-Scheme-Discovery

https://github.com/fratric/Ponzi-Scheme-Discovery
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agents are assumed to be capable to adapt, the detection model can be also used
to incentivize the discovery of new schemes, producing co-evolutionary adver-
sarial dynamics (see e.g. [15]).

Beyond grammatical evolution Grammatical evolution can be challenging to use
for more complex applications, both regarding the computational complexity and
the representation by a context-free grammar. In systems consisting of several
transactional sub-systems, where a variety of transaction operations can occur,
the search space represented by a context-free grammar would be too large to be
explored using evolutionary operators. In such case, the search algorithm asso-
ciated with the noncompliant agent (or a group of agents) would require a more
sophisticated type of reasoning, e.g. bringing some context into the grammar,
such that the noncompliant agent(s) are capable to plan ahead depending on
the environment and the actions of other agents, thus allowing modularization
of the search space. Moreover, the behaviour of the noncompliant agent ought
not to be deterministic, which is also important for generation of rich synthetic
data. However, this challenge is similar to planning and cooperation in complex,
diverse and stochastic environments which remain still open questions.

6 Conclusions

Our present research deals with exploration of non-compliant behaviours in the
context of policy-making. The paper sketched a general computational frame-
work to generate instances of transaction-based financial crime and illustrated
its application on a well known case of smart contract Ponzi schemes. It was
demonstrated that with only a modest set of assumptions it is possible to gener-
ate a sequence of transaction graphs that captures the functional and modular
aspects of two well-known types of Ponzi schemes, that differ in their dynamic
topology defining the redistribution of capital. We argue that the lines of re-
search revisited in this paper are relatively unexplored and deserve much more
attention, as they have the potential to successfully address certain important
issues present in the contemporary research on fraud detection. However, more
examples of fraud generated in simulation environment needs to be provided
before creating a sound basis for deployment into real socio-economical systems.
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