Hazard identification for UAVs based on soft institutions

Flavio S. Correa da Silva', Paul W. H. Chung?, Marcelo K. Zuffo!, Petros
Papapanagiotou?, David S. Robertson®, and Wamberto Vasconcelos* *

1 University of Sao Paulo, Sao Paulo Brazil
2 Loughborough University, Loughborough UK
3 University of Edinburgh, Edinburgh UK
4 University of Aberdeen, Aberdeen UK

Abstract. Hazard identification requires appropriate tools to generate
and analyse states that can lead to hazards, in order to support the design
of preventive and/or corrective measures. In the case of socio-technical
systems, hazard identification can be difficult given that the behaviour
of human centric components can at best be partially predictable. In
the present article we focus on a specific class of socio-technical systems
— namely air spaces containing pilot controlled as well as autonomous
aircrafts — and introduce the notion of relevant hazards. We also intro-
duce soft institutions as an appropriate platform for the identification of
relevant hazards.

Keywords: Safety engineering, hazard identification, socio-technical systems, soft
institutions.

1 Introduction

Hazard identification is used to assess all behaviours of a system so that safety engineers
can intervene in the system design to ensure that each behaviour leads to planned,
foreseen and safe states [1], providing information support to design preventive and/or
corrective measures. In the case of socio-technical systems, hazard identification is a
difficult task given that the behaviour of human centric components can at best be
partially predictable®.

Socio-technical systems can be characterised as open asynchronous concurrent sys-
tems in which some entities are humans and others are machines. Hence, interactions
between heterogeneous entities are a central concept to design, implement and analyse
socio-technical systems. In the present article we focus on safety and reliability and,

* This work has been partially supported by FAPESP-Brazil and by the EPSRC-UK.
Many important comments and criticisms on early versions of this work have been
generously provided by Dr. David Murray-Rust (Edinburgh, UK) and Dr. Amanda
Whitbrook (Derby, UK).

5 The concept of socio-technical systems was coined in the early 50s to analyse the
impact of the introduction of novel technologies in coal mining, after the empirical
observation that gains in productivity were not uniform in all studied work groups.
Its roots can be traced back to the analysis of the introduction of mechanisation in
jute milling in Scotland during the 30s [3, 11].



more specifically, on the construction of tools to support systems design based on haz-
ard identification. Given that it can be impossible or too difficult to fully predict the
behaviour of a socio-technical system as a whole, we introduce the notion of relevant
hazards to be considered during the design of a system. In brief, we characterise rele-
vant hazards as a well determined subset of the set of all potential hazards for a system
and reason backwards to identify all initial states and chains of events that can lead
to them. We then revise the system design in order to identify points in which design
interventions can either prevent hazards or inject remedial procedures to be taken in
case they occur.

We focus on a specific class of socio-technical systems for which hazard identifica-
tion is particularly relevant — namely, bounded air spaces containing pilot controlled
aircrafts as well as unmanned aerial vehicles (UAVs). We introduce a diagrammatic
language to support the characterisation of relevant hazards, of sequences of events that
can lead to them and of events to which can be associated actions to be kept in store
for each relevant hazard. We introduce soft institutions as an appropriate platform
for hazard identification based on relevant hazards, and illustrate how soft institutions
can be used as a formal counterpart to diagrams employed to design a system for safe
operations in bounded air spaces in which pilot controlled aircrafts share space with
UAVs. In section 2 we detail a characterisation of socio-technical systems, highlighting
as a relevant special case mission planning for coordinated UAVs with diversified levels
of autonomy. In section 3 we briefly introduce the main concepts related to hazard
identification and characterise in detail the notion of relevant hazards. We also intro-
duce a diagrammatic language to represent socio-technical systems aiming specifically
at the identification and analysis of failures. In section 4 we illustrate how the proposed
diagrammatic language can be used to characterise complex agent interactions in such
way that hazard identification is supported. As a concrete example, we illustrate how
it can be used to support the design of missions in bounded air spaces in which pilot
controlled aircrafts share space with UAVs. In section 5 we introduce the concept of
soft institutions, a corresponding computational platform based on this concept and
how it can be used as a platform to support hazard identification for the design of
socio-technical systems. Finally, in section 6 we present a brief discussion, conclusions
and proposed future work.

2 Socio-technical systems

A socio-technical system can be characterised as an open network of heterogeneous
interacting entities which can exchange messages in order to coordinate their actions.
Some of these entities are engineered and can be programmed to behave according
to rules which are explicitly determined and fully understood, even in the cases when
they are not fully deterministic; other entities are human centric and therefore their
behaviour can, at best, be nudged towards desired patterns of behaviour. In [3] we
find a framework that characterises six facets of socio-technical systems: (1) People;
(2) Technologies; (3) Processes/procedures; (4) Buildings/infrastructure; (5)
Goals; and (6) Culture. Depending on the combination and organisation of these
facets, different design strategies for socio-technical systems are most appropriate. We
identify five dimensions to characterise different design strategies for socio-technical
systems: (1) Openness to admit or dismiss entities; (2) Coordination levels among
entities; (3) Heterogeneity of entities; (4) Statefulness; and (5) Context sensi-
tiveness.



Different combinations of values of these dimensions require different strategies
for design, implementation and management of socio-technical systems. In the present
work we are specifically interested in bounded air spaces in which pilot controlled
aircrafts share space with UAVs. In this scenario, a system is typically (1) Partially
open, as aircrafts are allowed in and out of the air space provided that well specified
rules and norms are followed; (2) Locally coordinated, as entities communicate and
coordinate their actions following strict protocols which induce a hierarchy of control;
(3) Heterogeneous, as we are considering autonomous vehicles interacting with pilot
controlled vehicles and control systems comprised by sensors and actuators as well as
human operators; (4) Fully stateful, as the states of individual entities — especially
engineered entities — must be stored and managed in order to manage the whole system,
particularly with respect to hazard identification and engineering; (5) Sensitive to
system states and changes resulting from external factors as well as from consequences
of state updates of entities.

Our focus in the present article is on hazard identification during system design.
We are interested in structuring the interactions among entities in this scenario in such
way that all relevant hazards are taken into account and design decisions are made in
order to avoid failures or to build readiness to fix them in case they occur.

3 Hazard identification based on relevant hazards

We assume that all participating entities have been admitted to the system by following
the interaction protocols that characterise it. Entities which do not follow certified
interaction protocols are considered as external entities which can influence but are
not part of the system and, therefore, are not subject to design decisions related to
it. We also assume that the behaviour of an entity can be completely described by
the interactions in which it is prepared to participate. The internal functioning of any
entity is not taken into account explicitly. This way, human centred entities can be
considered uniformly together with complex engineered entities, and entities can be
described using different levels of abstraction, according to the level of detail used to
specify each interaction protocol under consideration.

Strategies for hazard identification during systems design are either preventive or
corrective [6]. The design of complex systems that are resilient to failures combines
these two strategies so that all relevant hazards are considered. We focus on a subset
of the set of all hazards, which are considered to be the relevant ones, which are in fact
the ones we are able to advance during synthesis and scrutiny of a system design. Our
proposed strategy for hazard identification during the design of a socio-technical sys-
tem is based on the following principles: (1) System entities are uniformly abstracted
as components capable of reacting to incoming messages from other components. Their
reactions correspond to (a) triggering internal, encapsulated behaviours which are in-
fluenced by environmental events, (b) updating internal states, and (c) interfacing with
well specified interaction protocols which can generate outgoing messages to other com-
ponents. (2) General system states and behaviour can be characterised by published
states, messages and interaction protocols used by system entities. (3) Hazard iden-
tification can be performed based on general system states. (4) Hazard identification
based on relevant hazards corresponds to the identification of a set of system states
which are considered hazards, identification of events that can lead to these states, and
identification of events that can result from hazards.



In order to support this strategy, we introduce a diagrammatic language to abstract
entities in a socio-technical system based on interaction protocols. The proposed lan-
guage is as follows: (1) Every entity is represented as a box labelled by a unique ID. (2)
Inside an entity we can have boxes representing the contexts into which the entity can
enter. (3) Inside a context we can have boxes representing the states admitted for the
entity in that context. (4) Inside a state we can have boxes representing the interaction
protocols allowed for an entity in a given context and state. An interaction protocol
can make an entity change context and/or state. In this case, the interaction protocol
has a hand-off to a different context and/or state. (5) Inside an interaction protocol we
have a directed graph of actions, in which nodes represent individual actions and edges
characterise the order in which actions must occur in the interaction protocol. Every
graph of actions has a root node which determines the first action to be performed,
followed by its successor nodes in sequence. A branch represents a committed choice.
A confluence represents a continuation that can be performed once at least one of the
conflating branches succeeds. Hence, a graph of actions is a concise representation for
a collection of alternative chains of actions that comprise an interaction protocol. An
action can correspond to (a) querying the knowledge base of an entity, (b) performing
a sensor-based operation in the environment, based on which the entity captures infor-
mation from the environment, (c¢) receiving a message from another entity. Incoming
messages must be sent by a specific entity in a given context and state, (d) updat-
ing a statement in the knowledge base of an entity, (e) performing an actuator-based
operation in the environment, based on which the entity performs actions upon the
environment, (f) sending a message to another entity. Outgoing messages must be ad-
dressed to a specific entity in a given context and state, or (g) changing context and/or
state of the entity, in which case a hand-off of the interaction protocol in a different
context and/or state is triggered.

Actions containing queries to the knowledge base, sensor-based operations and
receipt of messages are called in-actions while actions corresponding to updates in
the knowledge base, actuator-based operations, remittance of messages and change
of context and/or state are called out-actions. Sequences of in-actions can work as
preconditions for individual out-actions to occur.

Each element in the proposed language can be represented using standardised no-
tation as presented in Figures la and 1b%. In Figure 1a we depict an entity which can
participate in several contexts and assume several states within each of these contexts.
For each state there are several interaction protocols which can be triggered by the
entity. Some protocols have hand-offs in different contexts and/or states. Interaction
protocols are portrayed as graphs inside white rectangles and hand-offs are represented
as dashed arrows connecting graphs.

In Figure 1b we depict all possible types of actions that can belong to an interaction
protocol.

As a brief example to illustrate the use of the diagrams, we feature in Figure lc
two entities — namely, a UAV and the Air Traffic Control (ATC) — during a simple
interaction”. In this interaction, if necessary the UAV refuels and then it asks for
permission to take-off. The ATC confirms the permission to take-off, and then the
UAV changes state from standing to taziing.

Hazard identification can raise the possibility that the message from the ATC never
gets to the UAV. Backward reasoning could suggest that the exchange of messages

5 Larger versions of figures can be requested to the authors.
7 A detailed example is presented in section 4.



(a) Entity (b) Actions in inter- (c) Language in ac-
action protocols tion

Fig. 1: Notation for diagrammatic language

between the UAV and the ATC should contain additional steps, so that the UAV
would acknowledge receipt of the message and the ATC would not stop sending copies
of the permission to take-off until receiving an acknowledgement. Forward reasoning
could suggest the inclusion of a time-out sensing operation as part of the interaction
protocol for the UAV in standing state, to prevent the UAV from staying idle in case
the message from the ATC never arrives. Both strategies could be combined in order
to design a system that is resilient to failures.

Our purpose in building this diagrammatic language has been to support system
designers activities with a pictorial language capable of exposing hazards in a system
which can then be considered accordingly. In the next section we present a detailed
example in which a UAV is followed from standing off-lane through flying to landing.
We use this example to illustrate how the proposed diagrammatic language can be used
to represent complex systems in operation and how it can be used to identify hazards
and help in the refinement of system design to provide appropriate care to potential
hazards.

4 An illustrative example

In order to show how the proposed diagrammatic language can be used for hazard
identification, we consider a slightly more sophisticated example in which a complete
mission for a UAV is depicted and analysed. This mission corresponds to a complete
flight — from standing off-lane through flying to landing — and requires interactions
involving the UAV and an ATC. The number of states through which the UAV passes
is seven: Standing, Taxiing, Take-off, Initial climb, En route, Approach and Landing.

The diagrams corresponding to each state are depicted in Figures 2a to 2g.

In Figure 2a the entity UAV001 is initially switched off and off-lane. It is assumed
that it is listening to the appropriate channel for messages to receive a message requiring
it to start the engine, which takes UAV001 to the context of UAV and standing state.
The message triggers the interaction protocol depicted in Figure 2a. When it receives
a message to start the engine, it updates the knowledge base and performs the action
of starting the engine. It then queries the knowledge base to check whether the engine
has started. If there is a failure, then it tries again to start the engine, otherwise it
updates the knowledge base and checks fuel level and systems. If there is a problem,
then it stops the engine and tries to start again, otherwise it updates the knowledge
base and hands off control to an interaction protocol in Taxiing state.

The proposed strategies for hazard identification and prevention/recovery have re-
sulted in the loops back to the engine start message, together with the action to stop



the engine in case fuel and system messages indicate that the UAV is not ready for
flying.

In Figure 2b we have UAV001 and ATC001. UAV001 stays in the context of UAV
but now moves to taxiing state. ATC001 assumes context ATC and state to authorise
taxiing towards take-off.

The interaction protocol for UAV001 in context UAV and taxiing state is slightly
more complex than the protocol for standing state. UAV001 sends a message to an
entity that is available in the context of ATC. In our example, ATC001 receives this
message and replies back with either take-off OK or take-off denied. If take-off is denied,
then UAV001 loops back and re-sends the message, until take-off is OK. When take-
off is OK, then UAV001 checks whether power back is required. In case it is, then it
performs appropriate operations and checks again. When power back is not required,
then it finally performs taxiing and hands off control to an interaction protocol in
Take-off state.

In Figure 2c¢, UAV001 moves to take-off state and requests authorisation to take-off.
If ATCO001 authorises take-off, then UAV001 performs fuel and systems verification. If
there is something wrong, then take-off is aborted and a new authorisation is requested;
if verification succeeds then UAV001 proceeds to take-off. If ATC001 does not authorise
take-off, then UAV001 checks its knowledge base to decide whether to hold take-off or to
give up. If decision is to hold take-off, then a new authorisation is requested, otherwise
mission is aborted.

In Figure 2d, UAV001 performs the transition from take-off to climb, which is itself
a transition state towards en route state.

In Figure 2e, UAV001 moves to en route state and maintains communication with
ATCO001 anytime it requests change in cruise level, until it identifies it is time to start
descent. When this situation arises, then UAV001 requests permission to start descent.
When ATC001 grants permission for descent then UAV001 performs descent and state
moves to approach.

In Figure 2f, UAV001 moves to approach and maintains communication with ATC001
to request permission to start approach for landing. In case meteorological conditions
are not adequate, permission is denied and, depending on what conditions are occur-
ring, appropriate measures are taken before a second attempt to start approach for
landing is started. In case meteorological conditions are fine, permission is granted and
approach is started. In case some operation does not succeed during approach, UAV001
goes to circling and approach is restarted, otherwise approach is finalised and the entity
moves to landing, which is the final state in this mission.

Finally, in Figure 2g, UAV moves to landing and attempts to perform landing. If it
succeeds, then it goes to taxiing and switches off engines, otherwise it takes-off again.

A design tool to support hazard identification in these terms must allow the repre-
sentation of complex systems based on this vocabulary, and the exhaustive simulation
of interactions involving entities in a system once an event (or set of events) is high-
lighted. In the next section we introduce soft institutions as an appropriate platform
to build one such tool.

5 Soft institutions

We introduce soft institutions as a tool to design and implement socio-technical systems
which is particularly useful for hazard identification, given that a translation from the
diagrammatic language presented in the previous sections to interactions protocols in



(a) UAV (stand- (b) UAV (taxi- (¢) UAV (take- (d) UAV (climb)
ing) ing), ATC (Auth. off), ATC (Auth.
taxiing) take-off)

(e) UAV (en (f) UAV  (ap- (g) UAV (land-
route), ATC proach), ATC ing)

(auth. change (auth. approach)

level), ATC(auth.

descent)

Fig. 2: Interaction protocols

a soft institution is immediate. Soft institutions generalise the concept of electronic
institutions [4, 5, 10] to provide means to model complex systems comprised by human
as well as engineered peers [7]. They have been proposed as an appropriate platform to
design and implement socio-technical systems [2]. Electronic institutions are a powerful
framework to build systems comprised by multiple entities based on the principle that
the global behaviour of a complex system can be managed by the establishment of
norms, rewards for entities that abide by these norms and sanctions for those who
challenge them. In order for an entity to participate in an electronic institution, it
must be prepared to respond to norms, rewards and sanctions, as well as interact with
other participating entities.

Norms, rewards and sanctions in an electronic institution form a normative system
which should be flexible in order to adjust to the observed behaviour of participating
entities in an institution. The normative system dictates the way entities should behave
in order to be allowed into an electronic institution and an entity (or organisation
comprised by entities) must comply with the normative system in order to be able to
request participation in an electronic institution. Technological entities can be designed
and built to comply with normative systems and, therefore, participate in electronic
institutions. Human entities, however, may feel uncomfortable to need to learn and
then to be submissive to third party rules as a prerequisite to join into a network of
peers.

Soft institutions, in contrast, allow entities to act freely and adjust their behaviour
in a minimalist way to be able to join into local interaction protocols. Instead of having
a centralised control around the normative system (as is the case with electronic insti-
tutions), soft institutions have a decentralised, possibly asynchronous control, centred
on entities which choose to interact according to available protocols. Soft institutions



also consider as a basic principle that a full account of all states of the systems being
modelled is not feasible, hence hazard identification can only — and at best — be based
on relevant hazards as characterised in section 3.

We assume a language £ used to describe facts and computational expressions. The
language consists of three constructs: (1) Terms: constant or atomic expressions; (2)
Variables: uniquely identified strings; (3) Functions: collections of mappings from
tuples of terms to terms. Value assignments to variables are expressed as substitutions
o of the form {x; — ¢;}7, which denote that the construct ¢; is assigned to the variable
x;. A substitution application function & is applied to whole constructs, producing a
new construct in which every variable in a construct ¢ that is present in a substitution
o is replaced by the corresponding construct. A substitution application ¢ unifies two
constructs ¢1 and ¢z if the application of & to both constructs yields the same result,
i.e. C1 % C2 iﬁ@'61 = 6’02.

Each entity maintains a personal knowledge base. It is assumed, as a design prin-
ciple, that entities do not have access to each others’ personal knowledge bases. It is
also assumed, however, that each entity participating in a soft institution maintains a
part of its knowledge base stored as a collection of £ constructs, which we here name
institutional knowledge base, and which are updated and consulted using two operators:
(1) A(c) updates a fact ¢ (KB Update in Figure 1b). Depending on specific institutions
being designed, an update may correspond to inserting, actual updating or deleting in-
formation from the institutional knowledge base; (2) K(c, &) consults the institutional
knowledge base (KB Query in Figure 1b). Similar to the A operator, variations on
the semantics of the K operator can be used for different soft institutions. Essentially,
K(c, &) checks whether the construct ¢ belongs to the institutional knowledge base of
an entity; if it does, then it is retrieved from the knowledge base, and the substitution
& is used to build the construct 6(c). The institutional knowledge base contains a set
of ground terms R = {Ri1, -, Rm} which represent a set of contexts available to the
entity. Contexts are parameterised by states, so that e.g. Ris, refers to state s; in
context R;. It also contains a set of constructs PROT using the syntax specified in the
following paragraphs, which characterise interaction protocols available to the entity
given a context and a state.

Given an implementation of a platform for soft institutions, contexts and states are
the means for an entity to enter a soft institution: an entity can pick a context and
then a state from R, which become the institutional context and state of the entity
and grant the entity the right to engage into interactions using an appropriate protocol
available in PROT. Contexts and states can be retrieved and updated using the A
and K operators.

Messages are passed from entity to entity. To each entity is assigned a unique ID,
and messages depend upon contexts and states to be properly treated. A message M
is assumed to have the format M = (Rsend, 9T, Rrecy I Dother), where (1) Rseng is the
context/state that the sending entity must necessarily hold when the message is sent;
(2) gT is a ground term which corresponds to the content of the message; (3) Ryec is
the context/state that the receiving entity must hold in order for the message to be
received; (4) IDother is the ID of the “other” entity: it is the ID of the receiver when
a message is being sent and the ID of the sender when a message is being received.

The institutional knowledge base also contains two constructs that represent the
state of the entity with respect to the soft institution: (1) Comm stores the status of
communications. It contains the entity ID and two message queues containing incoming
and outgoing messages respectively. (2) Coord stores the status of coordination. It



contains the list of contexts and states already held by the entity including the current
context/state as head of the list, the protocol being followed, the stage of execution of
the current protocol and the set of variable assignments/substitutions.

Protocols are defined as a variation and extension of the Lightweight Coordination
Calculus (LCC) [9] specified as follows: (1) A protocol is a list of clauses. A clause
defines a script to be followed in order for an interaction to take place. Clauses have
the format cl(R,[c1, - ,cr]) i= Def where R € R is a context parameterised by a
state, c1,--- , ¢, are optional parameters and Def is the body of the clause:

Def := Closed | Out | Out < [In,--- ,Ins] |[Def then Def | Def or Def
In; := rec(Msg) | cond(c)
Out := Null | snd(Msg) | chR(R', [c],- - ,c]) | Alc)

(2) Closed concludes an interaction. (3) Out is an output action: (a) Null is an empty
action that does nothing. (b) snd(Msg) sends message Msg to another entity. (c)
chR(R',[c},- -+ ,c./]) either changes the context of the entity during the execution of a
clause or changes the state of the entity within the same context. (d) A(c) updates the
construct ¢ into the institutional knowledge base. (4) Out < [Ini, - -- ,In,] performs a
list of input actions and then performs an output action. An input action In; is one
of the following alternatives: (a) rec(Msg) receives a message Msg from another entity.
(b) cond(c) checks whether there is a construct ¢’ in the institutional knowledge base
and a substitution & such that K(c',5) = c¢. The construct c is a condition which can
be satisfied if the answer is positive. (5) then is a connective that represents sequen-
tial and, i.e. it joins two computational steps in sequence. (6) or is a connective that
represents non-deterministic choice between two computational steps.

Carefully crafted sets of protocols embedded into appropriate states and contexts
can implement sophisticated patterns of interaction, servicing large and complex socio-
technical systems. Interaction protocols work as support services for entities to engage
into well regulated and carefully designed interactions, but they are not mandatory
and they do not necessarily cover all aspects of all interactions that connect entities
participating in the same socio-technical system. System modeling based on soft insti-
tutions can be used to highlight facets of a system that are considered most relevant.
For hazard identification, relevant hazards can be characterised in detail and simula-
tions can be performed, so that forward and backward reasoning can be performed and
the design of a system can be refined and improved towards resilience with respect to
failures.

6 Conclusion and future work

In this work we have considered hazard identification during the design of systems for
flight control of autonomous UAVs, based on a diagrammatic language that can be
translated to protocols in soft institutions.

Implementations of platforms for soft institutions have already been presented else-
where [7], and frameworks for formal verification of interaction protocols with respect
to desired properties have also been developed [8]. In future work, we plan to employ
these systems as a platform to support the activities of safety engineers during the
design of complex systems, by providing them with tools to identify potential relevant
hazards.



References

1.

10.

11

F. Belmonte, W. Schon, L. Heurley, and R. Capel. Interdisciplinary safety analysis
of complex socio-technological systems based on the functional resonance accident
model: An application to railway traffic supervision. Reliability Engineering and
System Safety, 96:237-249, 2011.

F. S. Correa da Silva, P. Papapanagiotou, D. Murray-Rust, and D. Robertson. Soft
institutions — a platform to design and implement sociotechnical systems (submit-
ted). In 20th International Conference on Knowledge Engineering and Knowledge
Management, Ttaly, 2016.

M. C. Davis, R. Challenger, D. N. W. Jayewardene, and C. W. Clegg. Advancing
socio-technical systems thinking: a call for bravery. Applied Ergonomics, 45:171—
180, 2014.

M. Esteva, J. A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On
the formal specification of electronic institutions. In Agent mediated electronic
commerce, pages 126—147. Springer, 2001.

M. Esteva and C. Sierra. FElectronic Institutions: from specification to develop-
ment. Consell Superior d’Investigacions Cientifiques, Institut d’Investigacié en
Intel- ligeéncia Artificial, 2003.

E. Hollnagel. A tale of two safeties. Nuclear Safety and Simulation, 2013.

D. Murray-Rust, P. Papapanagiotou, and D. Robertson. Softening electronic in-
stitutions to support natural interaction. Human Computation, 2(2), 2015.

P. Papapanagiotou, D. Murray-Rust, and D. Robertson. Evolution of the
lightweight coordination calculus using formal analysis. Personal communication,
2016.

D. Robertson. Multi-agent coordination as distributed logic programming, pages
416-430. Proceedings 20th International Conference on Logic Programming —
Springer LNCS 3132. 2004.

C. Sierra, J. A. Rodriguez-Aguilar, P. Noriega, M. Esteva, and J. L. Arcos. En-
gineering multi-agent systems as electronic institutions. European Journal for the
Informatics Professional, 4(4):33-39, 2004.

E. Trist. The evolution of socio-technical systems. Occasional paper, 2:1981, 1981.



