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Abstract. Opportunism is a behavior that takes advantage of knowl-
edge asymmetry and results in promoting agents’ own value and demot-
ing others’ value. We want to eliminate such selfish behavior in multi-
agent systems, as it has undesirable results for the participating agents.
In order for monitoring and constraint mechanism to be put in place,
it is needed to know in which context agents will or are likely to per-
form opportunistic behavior. In this paper, we develop a framework to
reason about agents’ opportunistic propensity. Opportunistic propensity
refers to the potential for an agent to perform opportunistic behavior.
In particular, agents in the system are assumed to have their own value
systems and knowledge. With value systems, we define agents’ state pref-
erences. Based on their value systems and incomplete knowledge about
the state, they choose one of their rational alternatives, which might be
opportunistic behavior. We then characterize the situation where agents
will perform opportunistic behavior and the contexts where opportunism
is impossible to occur.
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1 Introduction

Let us first consider an example scenario. A seller sells a cup to a buyer and it is
known by the seller beforehand that the cup is actually broken. The buyer buys
the cup without knowing it is broken. The seller exploits the knowledge asym-
metry about the transaction to achieve his own gain at the expense of the buyer.
Such behavior which is intentionally performed by the seller was named oppor-
tunistic behavior (or opportunism) by economist Williamson [13]. Opportunism
is a selfish behavior that takes advantage of relevant knowledge asymmetry and
which results in promoting one’s own value and demoting others’ value [6]. In the
context of multi-agent systems, it is normal that knowledge is distributed among
participating agents in the system, which creates the ability for the agents to
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behave opportunistically. We want to constrain such a selfish behavior, as it has
undesirable results for other agents in the system. Evidently, not every agent is
likely to be opportunistic. In social science, ever since the theory about oppor-
tunism was proposed by Williamson in economics, it has gained a large amount
of criticism due to over-assuming that all economic players are opportunistic.
[4] highlights the challenge on how to predict opportunism ex ante and intro-
duces a cultural perspective to better specify the assumptions of opportunism.
In multi-agent systems, we also need to investigate the interesting issues about
opportunistic propensity so that the appropriate amount of monitoring [7] and
constraint mechanisms can be put in place.

Based on decision theory, an agent’s decision on what to do depends on the
agent’s ability and preferences. If we apply it to opportunistic behavior, an agent
will perform opportunistic behavior when he can do it and he prefers doing it.
Those are the two issues that we consider in this paper without discussing any
normative issues. Based on this assumption, we develop a model of transition
systems in which agents are assumed to have their own knowledge and value
systems, which are related to the ability, and the desire, respectively, of being
opportunistic. Our framework can be used to predict and specify when an agent
will perform opportunistic behavior, such as which kinds of agents are likely to
perform opportunistic behavior and under what circumstances. A monitoring
mechanism for opportunism benefits from this result as monitoring devices may
be set up in the occasions where opportunism will potentially occur. We can
also design constraint mechanisms for opportunism based on the understanding
of how agents decide to behave opportunistically. Besides, our framework can
be used by autonomous agents to decide whether to participate in the system,
as their actions might potentially be regarded as opportunistic behavior given
their knowledge and value systems.

In this paper, we introduce a framework to reason about agents’ opportunis-
tic propensity. Opportunistic propensity refers to the potential for an agent to
perform opportunistic behavior. More precisely, agents in the system are as-
sumed to have their own value systems and knowledge. We specify an agent’s
value system as a strict total order over a set of values, which are encoded within
our logical language. Using value systems, we define agents’ state preferences.
Moreover, agents have partial knowledge about the true state where they are
residing. Based on their value systems and incomplete knowledge, they choose
one of their rational alternatives, which might be opportunistic. We thus provide
a natural bridge between logical reasoning and decision making, which is used
for reasoning about opportunistic propensity. We then characterize the situa-
tion where agents will perform opportunistic behavior and the contexts where
opportunism is impossible to happen.

2 Framework

We use Kripke structures as our basic semantic models of multi-agent systems.
A Kripke structure is a directed graph whose nodes represent the possible states
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of the system and whose edges represent accessibility relations. Within those
edges, equivalence relation K(·) ⊆ S × S represents agents’ epistemic relation,
while relation R ⊆ S × Act × S captures the possible transitions of the system
that are caused by agents’ actions. We use s0 to denote the initial state of the
system. It is important to note that, because in this paper we only consider
opportunistic behavior as an action performed by a hypothetical agent, we do
not model concurrent actions labeled with agents so that every possible transition
of the system is caused by an action instead of joint actions (see e.g., [2] [11] for
related models). For simplification, we assume that the actions in our model are
deterministic. We use Φ = {p, q, ...} of atomic propositional variables to express
the properties of states S. A valuation function π maps each state to a set of
properties that hold in the corresponding state. Formally,

Definition 2.1. Let Φ = {p, q, ...} be a finite set of atomic propositional vari-
ables. A Kripke structure over Φ is a tuple T = (Agt, S,Act, π,K,R, s0) where
e.g

– Agt = {1, ..., n} is a finite set of agents;
– S is a finite set of states;
– Act is a finite set of actions;
– π : S → P(Φ) is a valuation function mapping a state to a set of propositions

that are considered to hold in that state;
– K : Agt → 2S×S is a function mapping an agent in Agt to a reflexive,

transitive and symmetric binary relation between states; that is, given an
agent i, for all s ∈ S we have sK(i)s; for all s, t, u ∈ S sK(i)t and tK(i)u
imply that sK(i)u; and for all s, t ∈ S sK(i)t implies tK(i)s; sK(i)s′ is
interpreted as state s′ is epistemically accessible from state s for agent i. For
convenience, we use K(i, s) = {s′ | sK(i)s′} to denote the set of epistemically
accessible states from state s;

– R ⊆ S ×Act×S is a relation between states with actions, which we refer to
as the transition relation labeled with an action; we require that for all s ∈ S
there exists an action a ∈ Act and one state s′ ∈ S such that (s, a, s′) ∈ R,
and we ensure this by including a stuttering action sta that does not change
the state, that is, (s, sta, s) ∈ R; we restrict actions to be deterministic,
that is, if (s, a, s′) ∈ R and (s, a, s′′) ∈ R, then s′ = s′′; since actions are
deterministic, sometimes we denote state s′ as s〈a〉 for which it holds that
(s, a, s〈a〉) ∈ R. For convenience, we use Ac(s) = {a | ∃s′ ∈ S : (s, a, s′) ∈
R} to denote the available actions in state s.

– s0 ∈ S denotes the initial state.

Now we define the language we use. The language LKA, propositional logic
extended with knowledge and action modalities, is generated by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | Kiϕ | 〈a〉ϕ (i ∈ Agt, a ∈ Act)

The semantics of LKA are defined with respect to the satisfaction relation |=.
Given a Kripke structure T and a state s in T , a formula ϕ of the language can
be evaluated as follows:
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– T , s |= p iff p ∈ π(s);
– T , s |= ¬ϕ iff T , s 6|= ϕ;
– T , s |= ϕ1 ∨ ϕ2 iff T , s |= ϕ1 or T , s � ϕ2;
– T , s |= Kiϕ iff for all t such that sK(i)t, T , t |= ϕ;
– T , s |= 〈a〉ϕ iff there exists s′ such that (s, a, s′) ∈ R and T , s′ |= ϕ;

Other classical logic connectives (e.g.,“∧”, “→”) are assumed to be defined as
abbreviations by using ¬ and ∨ in the conventional manner. As is standard, we
write T |= ϕ if T , s |= ϕ for all s ∈ S, and |= ϕ if T |= ϕ for all Kripke structures
T .

In this paper, in addition of the K-relation being S5, we also place restrictions
of no-forgetting and no-learning based on Moore’s work [8] for the simplification
of our framework. It is defined as follows: given a state s in S, if there exists s′

such that s〈a〉K(i)s′ holds, then there is a s′′ such that sK(i)s′′ and s′ = s′′〈a〉
hold; if there exists s′ and s′′ such that sK(i)s′ and s′′ = s′〈a〉 hold, then
s〈a〉K(i)s′′. Following this restriction, we have |= Ki(〈a〉ϕ) ↔ 〈a〉Kiϕ. The no-
forgetting principle says that if after performing action a agent i considers a state
s′ possible, then before performing action a agent i already considered possible
that action a would lead to this state. In other words, if an agent has knowledge
about the effect of an action, he will not forget about it after performing the
action. The no-learning principle says that all the possible states resulting from
the performance of action a in agent i’s possible states before action a are indeed
his possible states after action a. In other words, the agent will not gain extra
knowledge about the effect of an action after performing the action.

3 Value System and Rational Alternative

Agents in the system are assumed to have their own value systems and knowl-
edge. Based on their value systems and incomplete knowledge about the state,
agents choose their rational alternatives for the next action they will perform.

3.1 Value System

Given several (possibly opportunistic) actions available to an agent, it is up to
the agent’s decision to perform opportunistic behavior. Basic decision theory
applied to intelligent agents relies on three things: agents know what actions
they can carry out, the effects of each action and agents’ preference over the
effects [10]. In this paper, the effects of each action are expressed by our logical
language, and we will specify agents’ abilities and preferences in this section. It is
worth noting that we only study a single action being opportunistic in this paper,
so we will apply basic decision theory for one-shot (one-time) decision problems,
which concern the situations where a decision is experienced only once.

One important feature of opportunism is that it promotes agents’ own value
but demotes others’ value. In this section we want to specify agents’ value sys-
tem, as it is the standard of agents’ consideration about the performance of
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opportunistic behavior. A value can be seen as an abstract standard according
to which agents have their preferences over states. For instance, if we have a value
denoting equality, we prefer the states where equal sharing or equal rewarding
hold. Related work about values can be found in [9] and [12].

Because of the abstract feature of a value, it is usually interpreted in more
detail as a state property, which is represented as a LKA formula. The most
basic value we can construct is simply a proposition p, which represents the
value of achieving p. More complex values can be interpreted such as of the form
〈a〉ϕ ∧ 〈a′〉¬ϕ, which represents the value that there is an option in the future
to either achieve ϕ or ¬ϕ. Such a value corresponds to freedom of choice. A
formula of a value can also be in the form of Kϕ, meaning that it is valuable to
achieve knowledge. In this paper we denote values with v, and it is important
to remember that v is an element from the language LKA. However, not every
formula from LKA can be intuitively classified as a value.

We argue that agents can always compare any two values, as we can consider
two equivalent values as one value. In other words, every element in the set of
values is comparable to each other and none of them is logically equivalent to
each other. Therefore, we define a value system as a strict total order over a set
of values, representing the degree of importance of something, which are inspired
by the goal structure in [1] and [3].

Definition 3.1 (Value System). A value system V = (Val,≺) is a tuple con-
sisting of a finite set Val = {v, ..., v′} ⊆ LKA of values together with a strict total
ordering ≺ over Val. When v ≺ v′, we say that value v′ is more important than
value v.

We also use a natural number indexing notation to extract the value of a value
system, so if V gives rise to the ordering v ≺ v′ ≺ . . . then V [0] = v, V [1] = v′,
and so on. Since a value is interpreted as a LKA formula and agents should be
aware of the state property change for their value change, value promotion and
demotion along a state transition can be defined as follows:

Definition 3.2 (Value Promotion and Demotion). Given a value v and an
action a, we define the following shorthand formulas:

promoted(v, a) := ¬v ∧ 〈a〉v
demoted(v, a) := v ∧ 〈a〉¬v

We say that a value v is promoted along the state transition (s, a, s′) if and only
if s |= promoted(v, a), and we say that v is demoted along this transition if and
only if s |= demoted(v, a).

An agent’s value v gets promoted along the state transition (s, a, s′) if and only
if v doesn’t hold in state s and holds in state s′; an agent’s value v gets demoted
along the state transition (s, a, s′) if and only if v holds in state s and doesn’t
hold in state s′. Note that in principle an agent is not always aware that his
or her value gets demoted or promoted, i.e. it might be the case where s |=
promoted(v, a) but agent i does not know this, i.e. s |= ¬(Ki promoted(v, a)).
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Now we can define a multi-agent system as a Kripke structure together with
agents’ value systems, representing their basis of practical reasoning. We also
assume that value systems are common knowledge in the system to simplify the
model. Formally, a multi-agent systemM is an (n+1)-tuple:M = (T , V1, ..., Vn),
where T is a Kripke structure, and for each agent i in T , Vi is a value system.

We now define agents’ preferences over two states in terms of values, which
will be used for modelling the effect of opportunism. We first define a function
highest(i, s, s′) that maps a value system and two different states to the most
preferred value that changes when going from state s to s′ from the perspective
of agent i. In other words, it returns the value that changes which the agent
most cares about, i.e. the most important change between these states for the
agent.

Definition 3.3 (Highest Value). Given a multi-agent system M, an agent
i and two states s and s′, function highest : Agt × S × S → Val is defined as
follows:

highest(i, s, s′)M := Vi[min{j | ∀k > j :M, s |= Vi[k]⇔M, s′ |= Vi[k]}]

We write highest(i, s, s′) for short if M is clear from context.

Note that if no values change between s and s′, we have that highest(i, s, s′) =
Vi[0], i.e. the function returns the agents least preferred value. Moreover, it is
not hard to see that highest(i, s, s′) = highest(i, s′, s), meaning that the function
is symmetric for the two state arguments.

With this function we can easily define agents’ preference over two states.
We use a binary relation “-” over states to represent agents’ preferences.

Definition 3.4 (State Preferences). Given a multi-agent systemM, an agent
i and two states s and s′, agent i weakly prefers state s′ to state s, denoted as
s -Mi s′, iff

M, s |= highest(i, s, s′)⇒M, s′ |= highest(i, s, s′)

We write s -i s
′ for short ifM is clear from context. Moreover, we write S -i S

′

for sets of states S and S′ whenever ∀s ∈ S, ∀s′ ∈ S′ : s - s′.

As is standard, we also define s ∼i s
′ to mean s -i s

′ and s′ -i s, and s ≺i s
′

to mean s -i s
′ and s 6∼i s

′. The intuitive meaning of the definition of s -i s
′ is

that agent i weakly prefers state s′ to s if and only if the agent’s most important
value does not get demoted (either stays the same or gets promoted). In other
words, agent i weakly prefers state s′ to s: if highest(i, s, s′) holds in state s, then
it must also hold in state s′, and if highest(i, s, s′) does not hold in state s, then it
does matter whether it holds in state s′ or not. Clearly there is a correspondence
between state preferences and promotion or demotion of values, which we can
make formal with the following proposition.
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Proposition 3.1. Given a model M with agent i, state s and available action
a in s. Let v∗ = highest(i, s, s〈a〉). We have:

s ≺i s〈a〉 ⇔M, s |= promoted(v∗, a)

s �i s〈a〉 ⇔M, s |= demoted(v∗, a)

s ∼i s〈a〉 ⇔M, s |= ¬(demoted(v∗, a) ∨ promoted(v∗, a))

Proof. Firstly we prove the third one. We define s ∼i s〈a〉 to mean s -i s〈a〉 and
s〈a〉 -i s. s -i s〈a〉 means that value v∗ doesn’t get demoted when going from s
to s〈a〉, and s〈a〉 -i s means that value v∗ doesn’t get demoted when going from
s〈a〉 to s. Hence, value v∗ doesn’t get promoted or demoted (stays the same) by
action a. Secondly we prove the first one. We define s ≺i s〈a〉 to mean s -i s〈a〉
and s 6∼i s〈a〉. s -i s〈a〉 means that value v∗ doesn’t get demoted when going
from s to s〈a〉, and s 6∼i s

′ means that either value v∗ gets promoted or demoted
by action a. Hence, value v∗ gets promoted by action a. We can prove the second
one in a similar way.

Additionally, apart from the fact that s ≺i s〈a〉 implies that the highest changed
value gets promoted, we also have that no other value which is more preferred
gets demoted or promoted. We have the result that the -i relation obeys the
standard properties we expect from a preference relation.

Proposition 3.2 (Properties of State Preferences). Given an agent i, his
preferences over states “-i” are

– Reflexive: ∀s ∈ S : s -i s;
– Transitive: ∀s, s′, s′′ ∈ S : if s -i s

′ and s′ -i s
′′, then s -i s

′′.

Proof. The proof follows Definition 3.4 directly. In order to prove -i is reflexive,
we have to prove that for any arbitrary state s we have s -i s. From Definition
3.3 and Definition 3.4 we know highest(i, s, s′) = Vi[0] when s = s′, and for any
arbitrary state s we always have M, s |= Vi[0] implies M, s |= Vi[0]. Therefore,
s -i s and we can conclude that -i is reflexive.

In order to prove transitivity, we have to prove M, s |= v∗ implies M, s′′ |=
v∗, where v∗ = highest(i, s, s′′). It can be the case where v∗ stays the same in
state s and s′′ or the case whereM, s |= ¬v∗ andM, s′′ |= ¬v∗. For the first case,
when s ∼ s′ and s′ ∼ s′′, meaning that all the values stay the same when going
from s to s′ and from s′ to s′′, it is also the case when going from s to s′′. We
now consider the case where M, s |= ¬v∗ and M, s′′ |= ¬v∗. Firstly, we denote
highest(i, s, s′) as u∗ and highest(i, s′, s′′) as w∗. It can either be that u∗ ∼i w

∗,
u∗ ≺i w

∗ or u∗ �i w
∗. If u∗ ∼i w

∗, we can conclude that u∗ ∼i w
∗ ∼i v

∗, hence
the implication holds. We now distinguish between the cases where u∗ ≺i w

∗ or
u∗ �i w

∗.

– If u∗ ≺i w
∗, we know that w∗ is the highest value that changes and gets

promoted when going from s′ to s′′, but stays the same between s and s′.
Hence, we can conclude thatM, s |= ¬w∗ andM, s′′ |= w∗, and that w∗ = v∗

(i.e., w∗ is the highest value that changes between s and s′′). Hence we have
M, s |= v∗ implies M, s′′ |= v∗.



8 Jieting Luo, John-Jules Meyer, Max Knobbout

– If u∗ �i w
∗, we know that u∗ is the highest value that changes and gets

promoted when going from s to s′, but stays the same between s′ and s′′.
Hence, we can conclude thatM, s |= ¬u∗ andM, s′′ |= u∗, and that u∗ = v∗

(i.e. v∗ is the highest value that changes between s and s′′). Hence we have
M, s |= v∗ implies M, s′′ |= v∗.

In our system, we only look at the highest value that changes to deduce state
preferences. Certainly, there are other ways of deriving these preferences from a
value system. Instead of only considering the highest value change in the state
transition, it is also possible to take into account all the value changes in the
state transition. For opportunism, what we want to stress is that opportunistic
agents ignore (rather than consider less) other agents’ interest, which has a lower
index in the agent’s value system. In order to align with this aspect, we use the
highest value approach in this paper.

3.2 Rational Alternatives

Since we have already defined values and value systems as agents’ standards for
decision-making, we can start to apply decision theory to reason about agents’
decision-making. Given a state in the system, there are several actions available
to an agent, and he has to choose one in order to go to the next state. We can
see the consideration here as a one-shot decision making. In decision theory, if
agents only act for one step, a rational agent should choose an action with the
highest (expected) utility without reference to the utility of other agents [10].
Within our framework, this means that a rational agent will always choose an
rational alternative based on his value system.

Before choosing an action to perform, an agent must think about which
actions are available to him. We have already seen that for a given state s,
the set of available actions is Ac(s). However, since an agent only has partial
knowledge about the state, we argue that the actions that an agent knows to
be available is only part of the actions that are physically available to him in a
state. For example, an agent can call a person if he knows the person’s phone
number; without this knowledge, he is not able to do it, even though he is holding
a phone. Recall that the set of states that agent i considers as being the actual
state in state s is the set K(i, s). Given an agent’s partial knowledge about a
state as a precondition, he knows what actions he can perform in that state,
which is the intersection of the sets of actions physically available in the states
in this knowledge set.

Definition 3.5 (Subjectively Available Actions). i Given an agent i and
a state s, agent i’s subjectively available actions are the set:

Ac(i, s) =
⋂

s′∈K(i,s)

Ac(s′).

Because a stuttering action sta is always included in Ac(s) for any state s, we
have that sta ∈ Ac(i, s) for any agent i. When only sta is in Ac(i, s), we say
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that the agent cannot do anything because of his limited knowledge. Obviously
an agent’s subjectively available actions is always part of his physically available
actions (Ac(i, s) ⊆ Ac(s)). Based on rationality assumptions, he will choose an
action based on his partial knowledge of the current state and the next state.
Given a state s and an action a, an agent considers the next possible states as
the set K(i, s〈a〉). For another action a′, the set of possible states is K(i, s〈a′〉).
The question now becomes: How do we compare these two possible set of states?
Clearly, when we have K(i, s〈a〉) -i K(i, s〈a′〉), meaning that all alternatives
of performing action a′ are at least as desirable as all alternatives of choosing
action a, it is always better to choose action a′. However, in some cases it might
be that some alternatives of action a are better than some alternatives of action
a′ and vice-versa. In this case, an agent cannot decisively conclude which of the
actions is optimal. This approach has natural ties to game theory in the context
of (non-)dominated strategies [5]. This leads us to the following definition:

Definition 3.6 (Rational Alternatives). Given a state s, an agent i and two
actions a, a′ ∈ Ac(i, s), we say that action a is dominated by action a′ for agent
i in state s iff K(i, s〈a〉) -i K(i, s〈a′〉). The set of rational alternatives for agent
i in state s is given by the function a∗i : S → 2Act, which is defined as follows:

a∗i (s) = {a ∈ Ac(i, s) | ¬∃a′ ∈ Ac(i, s) : a 6= a′ and

a′ dominates a for agent i in state s}.

The set a∗i (s) are all the actions for agent i in state s which are available to
him and are not dominated by another action which is available to him. In other
words, it contains all the actions which are rational alternatives for agent i.
Since it is always the case that Ac(i, s) is non-empty because of the stuttering
action sta, and since it is always the case that there is one action which is non-
dominated by another action and Ac(i, s) is finite, we conclude that a∗i (s) is
non-empty. We can see that the actions that are available to an agent not only
depend on the physical state, but also depend on his knowledge about the state.
The more he knows, the better he can judge what his rational alternative is.
In other words, agents try to make a best choice based on their value systems
and incomplete knowledge about the state. The following proposition shows how
agents remove actions with our approach.

Proposition 3.3. Given a state s, an agent i and two actions a, a′ ∈ Ac(i, s),
action a is dominated by action a′ iff

¬∃s′, s′′ ∈ K(i, s) : s′〈a〉 � s′′〈a′〉.

Proof. ∃s′, s′′ ∈ K(i, s) : s′〈a〉 � s′′〈a′〉 is equivalent to K(i, s〈a〉) 6- K(i, s〈a′〉),
because s′〈a〉 ∈ K(i, s〈a〉) and s′′〈a′〉 ∈ K(i, s〈a′〉). And K(i, s〈a〉) 6- K(i, s〈a′〉)
is equivalent to the fact that action a is non-dominated by action a′.

From this proposition we can see that agents remove all the options (actions)
that are always bad to do, and there is no possibility to be better off by choosing
a dominated action. The following proposition connects Definition 3.6 with state
preferences.
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Proposition 3.4. Given a multi-agent system M, a state s and an agent i,

sta 6∈ a∗(s)⇒ ∀a ∈ a∗(s) : s -i s〈a〉.

Proof. We prove it by contradiction. If there exists an action a ∈ a∗(s) such that
agent i’s value will get demoted by performing it, it will be dominated by the
stuttering action sta, which can always keep agent i’s values neutral, and sta
might be in a∗(s). Contradiction!

If the stuttering action sta is not in the set of rational alternatives for agent i,
meaning that it is dominated by the actions in the set of rational alternatives,
agent i can always at least keep his value neutral by performing any action in his
rational alternatives. We will illustrate the above definitions and our approach
through the following example.

Example 1. Figure 1 shows a transition systemM for agent i. State s and s′ are
agent i’s epistemic alternatives, that is, K(i, s) = {s, s′}. Now consider the ac-
tions that are physically available and subjectively available to agent i. Aci(s) =
{a1, a2, a3, sta}, Aci(s′) = {a1, a2, sta}. Because Ac(i, s) = Aci(s) ∩ Aci(s′),
agent i knows that only sta, a1 and a2 are available to him in state s .

Next we talk about agent i’s rational alternatives in state s. Given agent
i’s value system Vi = (u ≺ v ≺ w), and the following valuation: u, ¬v and
¬w hold in K(i, s), ¬u, ¬v and w hold in K(i, s〈a1〉), and u, v and ¬w hold in
K(i, s〈a2〉), we then have the following state preferences: K(i, s) ≺ K(i, s〈a1〉),
K(i, s) ≺ K(i, s〈a2〉) and K(i, s〈a2〉) ≺ K(i, s〈a1〉), meaning that action a2 and
the stuttering action sta are dominated by action a1. Thus, we have a∗i (s) = {a1}.

Fig. 1. A transition system M for agent i
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4 Defining Opportunism

Before reasoning about opportunistic propensity, we should first formally know
what opportunism actually is. Opportunism is a social behavior that takes ad-
vantage of relevant knowledge asymmetry and results in promoting one’s own
value and demoting others’ value [6]. It means that it is performed with the pre-
condition of relevant knowledge asymmetry and the effect of promoting agents’
own value and demoting others’ value. Firstly, knowledge asymmetry is defined
as follows.

Definition 4.1 (Knowledge Asymmetry). Given two agents i and j, and
a LKA formula φ, knowledge asymmetry about φ between agent i and j is the
abbreviation:

KnowAsym(i, j, φ) := Kiφ ∧ ¬Kjφ ∧Ki(¬Kjφ)

It holds in a state where agent i knows φ while agent j does not know φ and
this is also known by agent i. It can be the other way around for agent i and
agent j. But we limit the definition to one case and omit the opposite case for
simplicity. Now we can define opportunism.

Definition 4.2 (Opportunism). Given a multi-agent systemM, a state s and
two agents i and j, the assertion Opportunism(i, j, a) that action a performed
by agent i is opportunistic behavior is defined as:

Opportunism(i, j, a) := KnowAsym(i, j, promoted(v∗, a) ∧ demoted(w∗, a))

where v∗ = highest(i, s, s〈a〉) and w∗ = highest(j, s, s〈a〉).

This definition shows that if the precondition KnowAsym is satisfied in state s
then the performance of action a will be opportunistic behavior. The asymmet-
ric knowledge that agent i has is about the change of the truth value of v∗ and
w∗ along the transition by action a, where v∗ and w∗ are the values that agent
i and agent j most care about along the transition respectively. It follows that
agent j is partially or completely not aware of it. Compared to the definition of
opportunism in [6], Definition 4.2 focuses on the opportunistic propensity of an
agent in a state, in the sense that the precondition of performing opportunistic
behavior is modeled in an explicit way. As is stressed in [6], opportunistic be-
havior is performed by intent rather than by accident. In this paper, instead of
explicitly modeling intention, we interpret it from agents’ rationality that they
always intentionally promote their own values. We can derive three propositions
from the definition, which are useful in our next section.

Proposition 4.1 (Value Promotion and Demotion). Given a multi-agent
system M and an opportunistic behavior a performed by agent i to agent j in
state s, action a will promote agent i’s value but demote agent j’s value, which
can be formalized as

M, s |= Opportunism(i, j, a) ⇒ s ≺i s〈a〉 and s �j s〈a〉
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Proof. FromM, s |= Opportunism(i, j, a) we have:M, s |= Ki(promoted(v∗, a)∧
demoted(w∗, a)). And thus since all knowledge is true, we have that M, s |=
promoted(v∗, a) and M, s |= demoted(w∗, a). Using the correspondence found
in Proposition 3.1, we can conclude s ≺i s〈a〉 and s �j s〈a〉.

Proposition 4.2 (Different Value Systems). Given a multi-agent systemM
and opportunistic behavior a performed by agent i to agent j in state s, agent i
and agent j have different value systems, which can be formalized as

M, s |= Opportunism(i, j, a) ⇒ Vi 6= Vj

Proof. We prove it by contradiction. We denote v∗ = highest(i, s, s〈a〉) and w∗ =
highest(j, s, s〈a〉), for which v∗ and w∗ are the property changes that agent i
and agent j most care about in the state transition. If Vi = Vj , then v∗ =
w∗. However, because M, s |= Ki(promoted(v∗, i) ∧ demoted(w∗, j)), and thus
M, s |= Ki(¬v∗∧w∗), and because knowledge is true, we haveM, s |= ¬v∗∧w∗.
But, since v∗ = w∗, we have M, s |= ¬v∗ ∧ v∗. Contradiction!

From this proposition we can see that agent i and agent j care about different
things based on their value systems about the transition.

Proposition 4.3 (Inclusion). Given a multi-agent systemM and opportunis-
tic behavior a performed by agent i to agent j in state s, agent j’s knowledge
set in state s is not a subset of agent i’s and action a is available in agent i’s
knowledge set:

M, s |= Opportunism(i, j, a) ⇒ K(j, s) 6⊆ K(i, s) and a ∈ Ac(i, s)

Proof. We can prove it by contradiction. Knowledge set is the set of states
that an agent considers as possible in a given actual state. ∀t ∈ K(i, s), agent i
considers state t as a possible state where he is residing. The same with K(j, s) for
agent j. If K(j, s) 6⊆ K(i, s) is false, we have K(j, s) ⊆ K(i, s) holds, which means
that agent j knows more than or exactly the same as agent i. However, Definition
4.2 tells that agent i knows more about the transition by action a than agent
j. So K(j, s) ⊆ K(i, s) is false, meaning that K(j, s) 6⊆ K(i, s) holds. Further,
because fromM, s |= Opportunism(i, j, a) we haveM, s |= Ki(〈a〉v∗ ∧ 〈a〉¬w∗),
by the semantics of 〈a〉v∗ and 〈a〉¬w∗, for all t ∈ K(i, s) there exists (t, a, s′) ∈ R.
Thus, we have a ∈ Ac(i, s).

These three propositions are three properties that we can derive based on
Definition 4.2. The first one shows that opportunistic behavior results in value
opposition for the agents involved; the second one tells that the two agents
involved in the relationship evaluate the transition based on different value sys-
tems; the third one indicates the asymmetric knowledge that agent i has for
behaving opportunistically. We will illustrate the above definitions through the
example mentioned at the beginning of the paper.
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Example 2. Figure 2 shows the example of selling a broken cup: The action
selling a cup is denoted as sell and we use two value systems Vs and Vb for
the seller and the buyer respectively. State s1 is the seller’s epistemic alterna-
tive, while state s1 and s2 are the buyer’s epistemic alternatives. We also use
a dash line circle to represent the buyer’s knowledge K(b, s1) (not the seller’s).
In this example, K(s, s1) ⊂ K(b, s1). Moreover, hm = highest(s, s1, s1〈sell〉),
¬hb = highest(b, s1, s1〈sell〉), meaning that the seller only cares about if he gets
money from the transition, while the buyer only cares about if he has a bro-
ken cup from the transition. We also have M, s1 |= Ks(promoted(hm, sell) ∧
demoted(¬hb, sell)), meaning that the seller knows the transition will promote
his own value while demote the buyer’s value in state s1. For the buyer, action
sell is available in both state s1 and s2. However, hb doesn’t hold in both s1
and s2, so he doesn’t know if he has a broken cup or not. Therefore, there is
knowledge asymmetry between the seller and the buyer about the value changes
from s1 to s1〈sell〉. Action sell is potentially opportunistic behavior in state s1.

Fig. 2. Selling a broken cup

5 Reasoning about Opportunistic Propensity

In this section, we will characterize the contexts where agents will perform op-
portunistic behavior and where opportunism is impossible to happen.

5.1 Having Opportunism

Agents will perform opportunistic behavior when they have the ability and the
desire of doing it. The ability of performing opportunistic behavior can be in-
terpreted by its precondition: it can be performed whenever its precondition is
fulfilled. Agents have desire to perform opportunistic behavior whenever it is a
rational alternative. There are also relations between agents’ ability and desire
of performing an action. As rational agents, firstly we think about what actions
we can perform given the limited knowledge we have about the state, and sec-
ondly we choose the action that may maximize our utilities based on our partial
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knowledge. This practical reasoning in decision theory can also be applied to
reasoning about opportunistic propensity. Given the asymmetric knowledge an
agent has, there are several (possibly opportunistic) actions available to him,
and he may choose to perform the action which is a rational alternative to him,
regardless of the result for the other agents. Based on this understanding, we
have the following theorem, which implies agents’ opportunistic propensity:

Theorem 1. Given a multi-agent system M, a state s, two agents i and j and
opportunistic behavior a, opportunistic behavior is a rational alternative for agent
i in state s:

∃a ∈ a∗i (s) :M, s |= Opportunism(i, j, a)

iff

1. ∀t ∈ K(i, s) : M, t |= promoted(v∗, a) ∧ demoted(w∗, a), ∃t ∈ K(j, s) :
M, t |= ¬(promoted(v∗, a) ∧ demoted(w∗, a)), where v∗ = highest(i, s, s〈a〉)
and w∗ = highest(j, s, s〈a〉);

2. s ≺i s〈a〉 and s �j s〈a〉;
3. ¬∃a′ ∈ Ac(i, s) : a 6= a′ and a′ dominates a.

Proof. Forwards: If action a is opportunistic behavior, we can immediately
have statement 1 by the definition of Knowledge Set. Because action a is in
agent i’s rational alternatives in state s (a ∈ a∗i (s)), by Definition 3.6, action
a is not dominated by any action in Ac(i, s). Also because action a is oppor-
tunistic, by Proposition 4.1 it results in promoting agent i’s value but demoting
agent j’s value (s ≺i s〈a〉 and s �j s〈a〉). Backwards: Statement 1 means that
there is knowledge asymmetry between agent i and agent j about the formula
promoted(v∗, a)∧demoted(w∗, a). From this we can see the knowledge asymme-
try is the precondition of action a. If this precondition is satisfied, agent i can
perform action a. Moreover, by statement 2, because action a promotes agent i’s
value but demotes agent j’s value, we can conclude that action a is opportunistic
behavior. By statement 3, because action a is not dominated by any action in
Ac(i, s), it is a rational alternative for agent i in state s to perform action a.

Given an opportunistic behavior a, in order to predict its performance, we
should first check the asymmetric knowledge that agent i has for enabling its
performance. Based on agent i’s and agent j’s value systems, we also check if it is
not dominated by any actions in Ac(i, s) and its performance can promote agent
i’s value but demote agent j’s value. It is important to stress that Theorem
1 never states that agents will for sure perform opportunistic behavior if the
three statements are satisfied. Instead, it shows opportunism is likely to happen
because it is in agents’ rational alternatives.

5.2 Not Having Opportunism

We need much information about the system as Theorem 1 states to predict
opportunism, and it might be difficult to achieve all of them. Fortunately, some-
times it is already enough to know that opportunism is impossible to occur.
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An example might be detecting opportunism: if we already know in which con-
text agents cannot perform opportunistic behavior, there is no need to set up
any monitoring mechanisms for opportunism in those contexts. The following
propositions characterize them:

Proposition 5.1. Given a multi-agent system M, a state s, two agents i and
j and an action a,

K(i, s) = K(j, s)⇒M, s |= ¬Opportunism(i, j, a).

Proof. When K(i, s) = K(j, s) holds, which means that both agent i and agent
j have the same knowledge. In this context, Statement 1 in Theorem 1 is not
satisfied, so action a is not opportunistic behavior.

Proposition 5.2. Given a multi-agent system M, a state s, two agents i and
j and an action a,

Vi = Vj ⇒M, s |= ¬Opportunism(i, j, a).

Proof. If Vi = Vj holds, which means that both agent i and agent j have the same
value system, the values of both agents don’t go opposite, that is, Statement 2
in Theorem 1 is not satisfied. So action a is not opportunistic behavior.

In this section, we specified the situation where agents will perform oppor-
tunistic behavior and characterized the contexts where opportunism is impos-
sible to happen. This information is essential not only for the system designers
to identify opportunistic propensity, but also for an agent to decide whether to
participate in the system given his knowledge and value system, as his behav-
ior might be regarded as opportunistic. Moreover, our approach can be used in
practice. For instance, in the electronic market place, only the seller knows that
the product is not good for the buyer before he ships it, and he can earn more
money if he still claims that the product is good. In this context the seller can
and wants to perform opportunistic behavior, selling the product, to the buyer
according to Theorem 1. Monitoring and constraint mechansim should be put
there in order to demotivated such a behavior. However, if we can ensure that
both the seller and the buyer are aware of the quality of the product before the
seller ships it, it is impossible for him to get benefits from the buyer.

6 Conclusion and Future Work

The investigation about opportunism is still new in the area of multi-agent sys-
tem. We ultimately aim at designing a constraint mechanism to eliminate such
selfish behavior in the system. In order to avoid over-assuming the performance
of opportunism so that monitoring and constraint mechanism can be put in
place, we need to know in which context agents will or are likely to perform
opportunistic behavior. In this paper, we argue that agents will behave oppor-
tunistically when they have the ability and the desire of doing it. With this idea,
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we developed a framework of multi-agent systems to reason about agents’ oppor-
tunistic propensity without considering normative issues. Agents in the system
were assumed to have their own value systems. Based on their value systems and
incomplete knowledge about the state, agents choose one of their rational alter-
natives, which might be opportunistic behavior. With our framework and our
definition of opportunism, we characterized the situation where agents will per-
form opportunistic behavior and the contexts where opportunism is impossible
to occur. Certainly there are multiple ways to extend our work. One interesting
way is to enrich our formalization of value system over different sets of values,
and the enrichment might lead to a different notion of the compatibility of value
systems and different results about opportunistic propensity. Another way is to
consider normative issues in our framework in addition to the ability and the
desire of being opportunistic.
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1. Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge, ‘Normative sys-
tem games’, in Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, p. 129. ACM, (2007).

2. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman, ‘Alternating-time tem-
poral logic’, J. ACM, 49(5), 672–713, (2002).

3. Nils Bulling and Mehdi Dastani, ‘Normative programs and normative mechanism
design’, in The 10th International Conference on Autonomous Agents and Multia-
gent Systems-Volume 3, pp. 1187–1188. International Foundation for Autonomous
Agents and Multiagent Systems, (2011).

4. Chao C Chen, Mike W Peng, and Patrick A Saparito, ‘Individualism, collectivism,
and opportunism: A cultural perspective on transaction cost economics’, Journal
of Management, 28(4), 567–583, (2002).

5. Avinash K Dixit and Barry Nalebuff, The art of strategy: a game theorist’s guide
to success in business & life, WW Norton & Company, 2008.

6. Jieting Luo and John-Jules Meyer, ‘A formal account of opportunism based on the
situation calculus’, AI & SOCIETY, 1–16, (2016).

7. Jieting Luo, John-Jules Ch. Meyer, and Max Knobbout, ‘Towards a framework
for detecting opportunism in multi-agent systems’, in ECAI 2016 - 22nd European
Conference on Artificial Intelligence, pp. 1636–1637, (2016).

8. Robert C Moore, Reasoning about knowledge and action, SRI International Menlo
Park, CA, 1980.

9. Jeremy Pitt and Alexander Artikis, ‘The open agent society: retrospective and
prospective views’, Artificial Intelligence and Law, 23(3), 241–270, (2015).

10. David L Poole and Alan K Mackworth, Artificial Intelligence: foundations of com-
putational agents, Cambridge University Press, 2010.

11. Wiebe van der Hoek and Michael Wooldridge, ‘Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications’, Studia Logica,
75(1), 125–157, (2003).

12. TL Van der Weide, Arguing to motivate decisions, Ph.D. dissertation, 2011.
13. Oliver E Williamson, ‘Markets and hierarchies: analysis and antitrust implications:

a study in the economics of internal organization’, (1975).


